High-Dimensional Factor Models and the Factor Zoo

Martin Lettau Haas School of Business, UC Berkeley

- Factor Zoo: An ever-growing list of characteristic premia
- Suppose we observe C characteristics of M assets over T periods
- Goal: Parsimonious model with $K_c \ll C$ pricing factors
- Standard approach:
 - 1. Sort assets into 10C portfolios \rightarrow C HML (10-1) factors
 - 2. Factor zoo: Reduce dimension from C to K_C factors
- Current literature: Methods in Step 2
 - $\rightarrow\,$ PCA and extensions, Lasso, Ridge, ML, neural nets, random forests, ...

- Factor Zoo: An ever-growing list of characteristic premia
- Suppose we observe C characteristics of M assets over T periods
- Goal: Parsimonious model with $K_c \ll C$ pricing factors
- Standard approach:
 - 1. **Sort** assets into 10C portfolios \rightarrow C HML (10-1) factors
 - 2. Factor zoo: Reduce dimension from C to K_C factors
- Current literature: Methods in Step 2
 - $\rightarrow\,$ PCA and extensions, Lasso, Ridge, ML, neural nets, random forests, ...
- ▶ This paper: Reverse the order of sorting and dimension reduction
 - 1. Factor zoo: Summarize C characteristics in K_c characteristic factors
 - 2. Sort assets into $10K_c$ portfolios $\rightarrow K_c$ HML factors
- ► Difference: Resolve factor zoo in characteristic space instead of return space

- Challenge: Data is 3-dimensional (characteristics of assets over time)
- Characteristics are correlated in all 3 dimensions
- ▶ PCA and factor models: Eliminate one dimension → loss of information
- High-dimensional data form tensors
- Tensor Factor Models (TFM):
 - Exploit dependencies along all 3 dimensions simultaneously
 - > Allow for complex dependencies across characteristics (vs. univariate/bivariate sort)
- Methodology:
 - 1. Dimension reduction: Apply TFM to asset pricing characteristics
 - \rightarrow K_c characteristic factors that summarize the information in C characteristics
 - 2. Portfolios: Sort on K_c factors $\rightarrow K_c$ pricing factors
 - 3. Compare TFM factors to Fama-French and PCA factors

1. Characteristic data:

- ▶ Parsimonious TFM models capture over 90% of the variation in the data
- Compress data by more than 95%
- Good fit for most characteristics, highest errors for MOM and REV
- Stable over time, robust results

2. Asset pricing implications:

- > TFM characteristic factors have higher means and SR than standard PCA factors
- TFM factors are related to the cross-section of returns
- ► TFM factors yield smaller pricing errors than FF and PCA factors
- Robust in-sample and out-of-sample results

- 1. From 2-dimensional PCA/SVD to Tensor Factor Models (TFM)
- 2. Empirical application: Characteristics of mutual funds
- 3. Estimation and fit of TFM
- 4. Construct pricing factors from TFM
- 5. Asset pricing tests, comparison to benchmark models (FF, PCA, ...)

Tensor Factor Models

Notation:	scalar:	$x \in \mathbb{R}$
	vector:	$\mathbf{x} \in \mathbb{R}^{\prime}$
	matrix:	$\mathbf{X} \in \mathbb{R}^{l_1} \times \mathbb{R}^{l_2}$
	3rd-order tensor (cuboid):	$\boldsymbol{\mathcal{X}} \in \mathbb{R}^{l_1} imes \mathbb{R}^{l_2} imes \mathbb{R}^{l_3}$

- Methods apply to n > 3 dimensions
- Paper: Summary of tensor operations
- Tensors have fibers (vectors) and slices (matrices)
- ▶ No transpose operator \rightarrow *n*-mode tensor multiplication $\times_n : \mathcal{X} \times_1 \mathbf{A}_1 \times_2 \mathbf{A}_2$
 - \rightarrow multiply each *n*-dimension tensor fiber with each row of **A**_n
- ▶ Data: Characteristic *c* of asset *m* in quarter $\rightarrow \mathcal{X}$: (*T*×*M*×*C*)

Tensor Factor Models: Intuition

- Objective: Capture characteristics in small number of factors
- ▶ Possibility: Eliminate one dimension → PCA
 - PCA for each period t = 1, ..., T
 - PCA for each asset m = 1, ..., M
 - PCA for each characteristic c = 1, ..., C
- ► T+M+C separate factor models exploit only 2-dim. correlations
- Loss of information, order of factors might change
- Tensor factor model (TFM): Estimate T+M+C 2-dimensional PCA simultaneously
- TFM exploit dependencies in all 3 dimensions
- The T+M+C models are connected and subject to restrictions

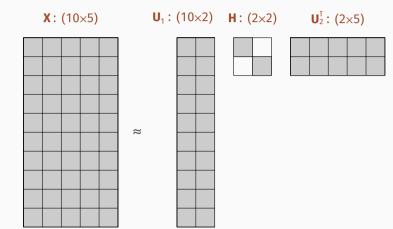
K-factor Singular Value Decomposition (SVD) of a matrix X:

 $\mathbf{X} = \mathbf{\hat{X}}_{K} + \mathbf{E}_{K}$ $\mathbf{\hat{X}} = \mathbf{U}_{1,K} \mathbf{H}_{K} \mathbf{U}_{2,K}^{\mathrm{T}}$

- ► H_K, U_{1,K}, U_{2,K} are matrices of eigenvalues/vectors of XX^T and X^TX
- **Factor** representation:

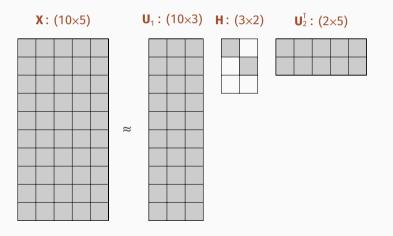
 $\mathbf{X} = \mathbf{F}_{K} \mathbf{B}_{K}^{\mathsf{T}} + \mathbf{E}_{K},$ $\mathbf{F}_{K} = \mathbf{U}_{1,K} \mathbf{H}_{K}, \ \mathbf{B}_{K}^{\mathsf{T}} = \mathbf{U}_{2,K}^{\mathsf{T}}$

- ► Factor matrix **F**_K, loading matrix **B**^T_K
- Tucker decomposition extends matrix SVD to tensors
- Note: F_κ are PCA factors, not asset pricing factors (f_t)



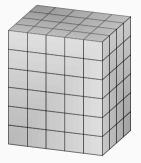
Asymmetric SVD: $K_1 = 3, K_2 = 2$

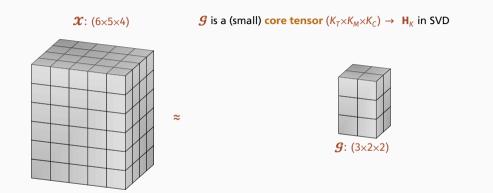
- ▶ In principle, we could write an SVD with different $K_1 \neq K_2$
- But **H** is **diagonal** \rightarrow equivalent to $K = \min(K_1, K_2)$
- ▶ Tensor SVD: \mathcal{H} is **not** diagonal \rightarrow different K_i possible



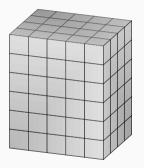
𝔅: (6×5×4)

 $\boldsymbol{\mathcal{X}}$ is a (large) data tensor ($T \times M \times C$)





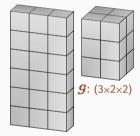
𝔅: (6×5×4)



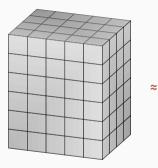
≈

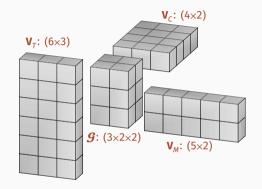
Tensor product $\boldsymbol{\mathcal{G}}_{\times_1} \mathbf{V}_{\tau} : (6 \times 2 \times 2) \rightarrow \mathbf{U}_{1,K} \mathbf{H}_K$ in SVD

V₇: (6×3)



: (6×5×4)





- $\blacktriangleright \text{ TFM: } \boldsymbol{\mathcal{X}} \approx \boldsymbol{\mathcal{G}} \times_1 \boldsymbol{\mathsf{V}}_{\mathsf{T}} \times_2 \boldsymbol{\mathsf{V}}_{\mathsf{M}} \times_3 \boldsymbol{\mathsf{V}}_{\mathsf{C}}$
- SVD: $\mathbf{X} \approx \mathbf{U}_{1,K} \mathbf{H}_{K} \mathbf{U}_{2,K}^{\mathsf{T}} = \mathbf{H}_{K} \times_{1} \mathbf{U}_{1,K} \times_{2} \mathbf{U}_{2,K}$

Tucker Tensor Decomposition

• K-factor SVD of $(T \times N)$ matrix: **X** = $\hat{\mathbf{X}}$ + **E**

 $\hat{\mathbf{X}}(K) = \mathbf{U}_{1,K} \mathbf{H}_{K} \mathbf{U}_{2,K}^{\mathsf{T}} = \mathbf{H}_{K} \times_{1} \mathbf{U}_{1,K} \times_{2} \mathbf{U}_{2,K}$

• Tucker decomposition of $(T \times M \times C)$ tensor: $\mathcal{X} = \hat{\mathcal{X}} + \mathcal{E}$

 $\hat{\boldsymbol{\mathcal{X}}}(K_T \times K_M \times K_C) = \boldsymbol{\mathcal{G}} \times_1 \boldsymbol{\mathsf{V}}_T \times_2 \boldsymbol{\mathsf{V}}_M \times_3 \boldsymbol{\mathsf{V}}_C$

 $\begin{aligned} \boldsymbol{\mathcal{G}}: & (K_{T} \times K_{M} \times K_{C}) \\ \boldsymbol{\mathsf{V}}_{T}: & (T \times K_{T}), \quad \boldsymbol{\mathsf{V}}_{M}: (M \times K_{M}), \quad \boldsymbol{\mathsf{V}}_{C}: (C \times K_{C}) \end{aligned}$

- ► *G* is the core tensor and V_T, V_M, V_C are loading matrices
- ▶ **G** not diagonal \rightarrow number of factors K_{τ}, K_{M}, K_{C} can differ across dimensions
- $\mathcal{G}, \mathbf{V}_T, \mathbf{V}_M, \mathbf{V}_C$ to minimize MSE(\mathcal{E})
- ▶ **Data compression**: DoF/*N*, where *N* is the sample size (see paper)

Similarities:

- Representations are not unique and can be rotated
- ▶ Normalization: **U**_i, **V**_i are orthonormal

Differences:

- SVD: H is diag. eigenvalue matrix, U_i are eigenvector matrices
- Tucker: Notions of eigenvalues/eigenvectors do not exist
- ► Core tensor *G* is not (necessarily) diagonal
- ▶ Numbers of factors for each mode can be different: (K_{τ}, K_{M}, K_{C})
- SVD: Closed-form solution (aside from numerical computation of eigenvalues/vectors)
- ► TFM: Higher Order Orth. Iteration (HOOI) → linear, robust, fast even for large data sets
- ▶ Monte Carlo simulation: Small estimation errors for sample sizes similar to data set

Properties of Tucker Decomposition

- > 3-dim. TFM implies 2-dim. factor models in each dimension
- Paper: TFM can be written as the sum of 2-dim. factor models
 - (M, C) dimensions: Sum of K_T factor models of order min(K_M, K_C)
 - (*T*, *C*) dimensions: Sum of K_M factor models of order min(K_T , K_C)
 - (T, M) dimensions: Sum of K_c factor models of order min (K_T, K_M)
- ► All 2-dim. factor models stem from the same 3-dim. TFM and are interconnected
- ▶ The TFM imposes restrictions on the 2-dim. factor models
- ▶ **Data compression** of *n*-dim. TFM: $O(Q^n)$, where $Q = \max(K_i)/\min(N_i)$
- Higher dimension $n \rightarrow$ higher dimension reduction

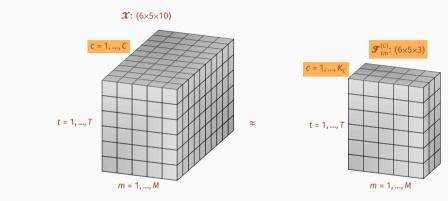
Factor Representation of TFM

- > The Tucker model can be written in factor form in each dimension
- Example: Characteristic factors

 $\boldsymbol{\mathcal{X}} = \boldsymbol{\mathcal{F}}_{tm}^{(C)} \times_{3} \mathbf{V}^{(C)} + \boldsymbol{\mathcal{E}}$ $\boldsymbol{\mathcal{F}}_{tm}^{(C)} = \boldsymbol{\mathcal{G}} \times_{1} \mathbf{V}^{(T)} \times_{2} \mathbf{V}^{(M)}$

- Characteristic factors: $\boldsymbol{\mathcal{F}}_{tm}^{(C)}$ is a $(T \times M \times K_C)$ -dim. characteristic factor tensor
- Similar to factor representation of SVD/PCA: Factor tensor instead of matrix
- Each *m*-slice is a $(T \times K_c)$ -dim. matrix $\mathbf{F}_{tm}^{(C)}$: TS of K_c characteristic factors of asset *m*
- The characteristic factors $\mathbf{F}_{tm}^{(C)}$, m = 1, ..., M
 - summarize the information in all C characteristics of asset m
 - exploit information across time, other assets, and other characteristics
 - are based only on characteristics but use no return information
 - can be used to construct asset pricing factors
- > Dimension reduction in characteristic space rather than in return space

Factor Zoo: C Characteristics to K_c Characteristic Factors



- $\mathcal{F}_{tm}^{(C)}$ is a tensor of characteristic factors
- Fix asset *m*: *m*th vertical slice of $\mathcal{F}_{tm}^{(C)}$ represents time series of K_c factors of asset *m*
- $\mathcal{F}_{tc}^{(M)}$: Mutual fund factors summarize info. in M assets
- $\mathcal{F}_{mc}^{(T)}$: Time factors summarize info. in T periods

What are "Time" Factors?

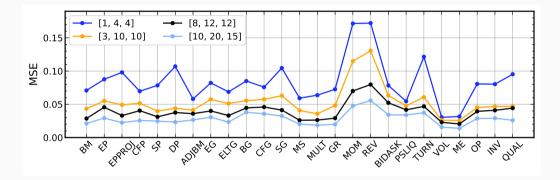
- SVD/PCA/factor models: "Time" does not play special role
- ► X: (T×N) matrix of time series of N variables
- PCA: covariance matrix X^TX:
 - ► (T×K) factor matrix: linear combinations across N
 - ► (K×N) loadings matrix
- ► Isomorphic alternative: X^T → PCA of XX^T:
 - ► (N×K) factor matrix: linear combinations across T
 - ► (K×T) loadings matrix
- ► SVD of X vs. X^T: Roles of U_{1,K}, U_{2,K} reversed
- PCA for X: Time series of cross-sectional factors
- PCA for X¹: Cross-sectional observations of time-series factors
- "Time series factors" have the same interpretation as XS factors
- Example: First factors close to XS mean or TS mean

Mutual Fund Characteristics

- Characteristics of mutual funds and ETFs (Lettau, Ludvigson, Manoel, 2021):
 - 2010Q3 to 2018Q4 = 34 quarters
 - 934 active equity mutual funds and ETFs
 - 25 characteristics: value/growth, growth of fundamentals, momentum, reversals, size, profitability, investment, liquidity
 - Balanced panel w/o missing values (balanced panel of stocks?)
- ► Data tensor *X* : (34×934×25) = 793,900 obs.
- Methodology:
 - 1. Estimate Tucker models for (K_T, K_M, K_C) : $\hat{\boldsymbol{X}}(K_T \times K_M \times K_C)$
 - 2. Construct characteristic factors \mathbf{F}_{tm} for m = 1, ..., M
 - 3. Asset pricing implications

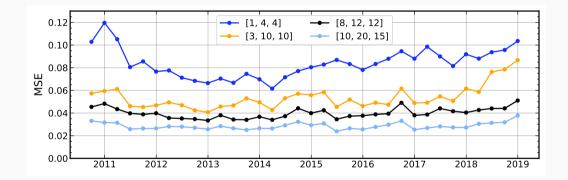
- No formal selection method for number of factors (K_T, K_M, K_C)
 - → Paper compares fit of many (K_{τ}, K_{M}, K_{C}) combinations
- Stable in short samples and across time (subsamples, rolling windows)
- Results do not depend on specific choice of (K_T, K_M, K_C)
- Recall: M = 934 mutual funds in the sample

	(1,4,4)	(3,10,10)	(8,12,12)	(10,20,15)
MSE	0.08	0.05	0.04	0.03
R ²	85.3%	90.7%	93.7%	95.2%
Data compression	99.5%	98.8%	98.4%	97.3%

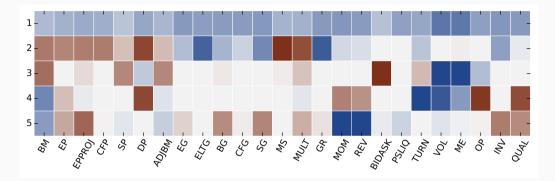


- Worst fit: MOM, REV
- Most characteristics are persistent
- Exceptions: MOM, REV
- Require higher K_T

Benchmark Models: MSE by Quarter



Characteristic Factors: Loading Matrix V^(C)

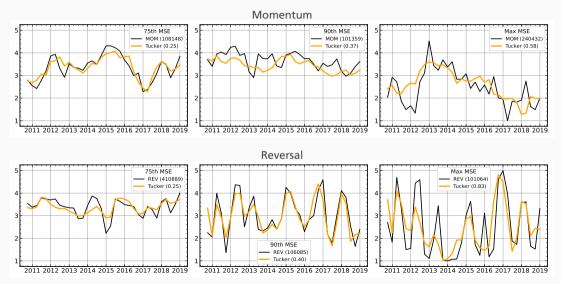


Factor 1: Long-only (related to means)

- Factor 2: Long growth rates, short price-multiples
- Factor 3: Long ME and VOL, short BID-ASK
- Factor 4: Long TURN, ME, VOL, short DP, OP, QUAL
- Factor 5: Long MOM, REV, short EPPROJ

Benchmark Model: Fit of individual Funds

Columns 1 and 2: 75th and 90th MSE percentiles, column 3: worst fit



Asset Pricing Implications

- ▶ Recall: Characteristic factors implied by TFM → $\mathcal{F}_{tm}^{(C)}$ with dim. $(T \times M \times K_c)$
- *m*-slices of $\mathcal{F}_{tm}^{(C)}$ are (T×C)-matrices $\mathbf{F}_{t(m)}$: time series of K_c characteristic factors of asset *m*
- **F**_{t(m)} summarizes the information in C characteristics of fund m in K_c factors
- ► TFM characteristic factors have similar properties as PCA factors:
 - The first TFM factor is related to means across funds
 - Higher-order factors are "long/short" factors
 - Example: Second TFM factor is related to "value"/"growth" characteristics
- See paper for more details
- Benchmarks: $(K_T, K_M, K_C) = (1, 4, 4), (3, 10, 10)$
- Next: Are TFM characteristic factors related to mutual fund returns?

- Standard regression: Excess returns on lagged characteristics
- Instead: Regress excess returns on lagged TFM characteristic factors

 $R_{m,t+1}^{e} = \alpha + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{F}_{t(m)} + \gamma_{t} + \boldsymbol{e}_{m,t+1}$

- Fama-MacBeth (FMB): XS regression in each period, sample means of coefficients
- FMB requires a long time series
- Alternative when T is small (e.g. T < C): Panel regression with time fixed effects (γ_t)
- t-stats: entity or time-clustered standard errors
- ▶ Between-R²: XS fit after all time effects are eliminated
- ► Comparison: Regression on all 25 characteristics → Table: 10 largest coefficients

TFM Characteristic Factors F _{t(m)}											
	1	2	3	4	5	6	7	8	9	10	R ²
β	0.36	0.10	0.34	0.26	0.30	0.29	0.35	-0.05	0.09	0.22	0.50
<mark>t</mark> -entity	(6.49)	(3.51)	(9.08)	(8.77)	(10.47)	(8.26)	(14.37)	(-1.92)	(3.28)	(6.87)	
<mark>t</mark> -time	(2.27)	(0.42)	(1.71)	(2.27)	(1.73)	(2.19)	(1.56)	(-0.45)	(0.35)	(0.92)	
					Charac	teristics					
	MS	MULT	REV	EP	ELTG	BIDASK	ADJBM	CFG	OP	VOL	R^2
β	0.61	0.47	0.44	0.33	0.28	0.18	0.14	0.13	0.08	0.04	0.45
t -entity	(2.48)	(1.57)	(8.66)	(4.94)	(1.97)	(2.17)	(2.39)	(2.14)	(1.48)	(0.18)	
<mark>t</mark> -time	(1.04)	(0.64)	(2.24)	(1.37)	(0.51)	(0.71)	(0.63)	(0.81)	(0.64)	(0.08)	

TFM characteristic factors:

- ▶ 8/10 coefficients are statistically significant using entity-clustered s.e.
- Between- $R^2 = 50\% \rightarrow$ TFM factors capture half of the XS variation in fund returns
- Characteristics: 7/25 significant coefficients, Between-R² = 45%

From TFM Characteristic Factors to Pricing Factors

- Standard approach:
 - 1. Form portfolios based on C characteristics
 - 2. Decile sorts: 10C portfolios
 - 3. C high-minus-low (HML) factors
 - 4. Apply dimension reduction (PCA, ML) to large panel of portfolio returns
- Instead:
 - 1. Dimension reduction in characteristic space: TFM
 - \rightarrow K_c TFM characteristic factors
 - 2. Form decile portfolios based on K_c characteristic factors $\rightarrow 10K_c$ portfolios
 - 3. HML pricing factors: K_c decile-10 minus decile-1 long/short portfolios
- Compare K_c TFM pricing factors to Fama-French and PCA HML factors
- ▶ Paper: Out-of-sample TFM, PCA factors → expanding window TFM, PCA estimations

HML Factor Returns: Tucker vs. PCA

- Normalize TFM and PCA factors to have positive means
- Table: 5 Factors with the highest means

HML Tucker Factors						
	5	9	4	3	10	
Mean	5.52	3.66	3.30	3.19	2.56	
SR	0.89	0.46	0.72	0.42	0.42	
CAPM α	4.88**	5.38*	5.20***	5.58**	5.09**	
FF3 α	5.23**	3.60	4.04**	1.44	4.11**	
		HML PCA	Factors			
	ELTG	REV	GR	QUAL	INV	
Mean	2.92	2.39	2.04	1.98	1.72	
SR	0.34	0.38	0.24	0.46	0.22	
CAPM α	-0.78	0.53	-1.64	3.67**	0.34	
FF3 <mark>a</mark>	-0.18	0.05	-1.11	1.87*	-0.28	

- ▶ Tucker pricing factors have higher returns and Sharpe ratios than standard PCA factors
- ▶ Next: Estimate linear factor models (TFM factors, Fama-French, PCA factors)
- ► All factors are excess returns → time series regressions:

 $R_{mt}^e = \alpha_m + \boldsymbol{\beta}_m^{\mathsf{T}} \mathbf{f}_t + \boldsymbol{e}_{mt}, \ m = 1, ..., M$

- Model evaluation: RMSPE of pricing errors α_m
- All specifications: First factor is the market excess return MKT
- Paper: Tucker (1,4,4) model performs (almost) as well as Tucker (3,10,10) model
- RMSPE*: RMSPE when other factors are added
- ▶ Note: GRS test rejects H₀ for all models

Factors	L	RMSPE		RMSPE*	
			Tucker	FF	PCA
MKT	1	3.27%	1.90%		2.22%
MKT, SMB	2	2.85%	2.02%		2.71%
MKT, SMB, HML	3	2.59%	2.24%		2.48%
Tucker(1,4,4)					
MKT, 4	2	2.80%		2.47%	2.73%
MKT, 2, 4	3	1.91%		2.46%	1.88%
РСА					
МКТ, З	2	2.58%	1.90%	2.64%	
MKT, 3, 6	3	2.22%	1.91%	2.48%	

Factors	L	RMSPE		RMSPE*	
			Tucker	FF	PCA
MKT	1	3.27%	1.90%		2.22%
MKT, SMB	2	2.85%	2.02%		2.71%
MKT, SMB, HML	3	2.59%	2.24%		2.48%
Tucker(1,4,4)					
MKT, 4	2	2.80%		2.47%	2.73%
MKT, 2, 4	3	1.91%		2.46%	1.88%
PCA					
МКТ, З	2	2.58%	1.90%	2.64%	
MKT, 3, 6	3	2.22%	1.91%	2.48%	
Tucker(1,4,4) 009	5				
MKT, 4	2	2.62%		2.55%	2.47%
MKT, 2, 4	3	1.87%		1.83%	2.28%
PCA-OOS					
MKT, 3	2	2.92%	2.42%	2.80%	
MKT, 3, 4	3	2.76%	2.53%	2.73%	

Sample: Cap-based (C), growth (G), value (V), balanced (B), and "sector"(S), other (O)

	С	В	G	V	S	0
Tucker-IS	1.85%	1.53%	1.65%	1.82%	2.80%	0.99%
Tucker-OOS	1.72%	1.63%	1.68%	1.49%	2.66%	0.86%
CAPM	3.37%	2.25%	2.05%	3.06%	5.84%	1.19%
FF3	2.54%	2.04%	1.85%	1.92%	4.86%	1.20%
PCA-IS	2.12%	1.77%	1.81%	1.92%	3.73%	1.42%
PCA-OOS	2.55%	2.09%	1.89%	2.22%	5.31%	1.31%

Sample: Cap-based (C), growth (G), value (V), balanced (B), and "sector"(S), other (O)

	С	В	G	V	S	0
Tucker-IS	1.85%	1.53%	1.65%	1.82%	2.80%	0.99%
Tucker-OOS	1.72%	1.63%	1.68%	1.49%	2.66%	0.86%
CAPM	3.37%	2.25%	2.05%	3.06%	5.84%	1.19%
FF3	2.54%	2.04%	1.85%	1.92%	4.86%	1.20%
PCA-IS	2.12%	1.77%	1.81%	1.92%	3.73%	1.42%
PCA-OOS	2.55%	2.09%	1.89%	2.22%	5.31%	1.31%

Pricing Errors and Characteristics

- Suppose returns depend on asset characteristics
- Question: Does factor model capture link between characteristics and returns?
- ▶ If factor model is correctly specified: PE should not depend on characteristics:

 $\mathsf{PE}_m = a + \mathbf{b}^{\mathsf{T}} \mathbf{C}_m + e_m$

Number of significant coefficients:

Model	# sig. <mark>b</mark> i	Largest <mark>b</mark> i	Smallest <mark>b</mark> i
\overline{R}_{m}^{e}	18	ME, MS	VOL, BM
Tucker-IS	9	INV, MOM	REV, SG
Tucker-OOS	10	INV, MOM	REV, VOL
CAPM	19	ME, MULT	GR, EPPROJ
FF3	16	MS, MULT	VOL, EPPROJ
PCA-IS	15	ME, MS	VOL, CFP
PCA-OOS	19	MULT, ME	GR, EPPROJ

Conclusion

- Factor models for higher dimensional data
- The Tucker decomposition extends the SVD of matrices to tensors
- ▶ Factor zoo: Dimension reduction in characteristic space rather than in return space
- Sample of mutual fund characteristics:
 - ► Data dimensions: (T×M×C) = (34×934×25)
 - Parsimonious Tucker models capture > 90% of variation in data
 - ▶ Robust fit across time, funds, and characteristics, stable over time
- TFM characteristic factors are related to fund returns
- Pricing factors derived from the Tucker model
 - have higher mean returns and SR than PCA factors
 - smaller pricing errors than Fama-French and PCA factors
- Full-sample and recursive estimation