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Abstract

Today’s supply chains are global, highly interconnected, and increasingly digital. These three at-
tributes of supply chains compound the effects of disruptions in production. For a company comprised
of many factories, a disruption in production at one site can impact production at other locations as
well as production at other companies linked through the supply chain. Quantifying the financial impact
of business interruption, such as production loss at a factory caused by a natural catastrophe (NatCat)
such as an earthquake or hurricane, is challenging. The difficulty in quantification is due to complex
risk propagation dynamics and complications related to the allocation of business profit to specific sites
of production. Complex risk propagation dynamics reflect product and supplier dependencies and the
inter-connectivity of related risks.

The aim of this research is to estimate production losses at company locations to enable the quan-
tification of exposed business interruption values (i.e. potential gross profit/earnings losses) taking into
account interdependencies among the company and the supplying partners within its supply chain net-
work. This approach can provide insurers and reinsurers with the required financial metrics to better
address these risks. In this paper, after defining the adapted stochastic fully decomposed supply chain
network (FDSN), we propose a new methodology to model the production rate potential at each site of
production as a stochastic process via a recursive procedure. Finally, we consider the HAZUS Earth-
quake Model (HAZUS-EM) to estimate downtime and to quantify the impact of business interruption.
Business interruption is propagated through the FDSN given an interruption in production in the supply
chain network.

KEYWORDS: supply chain, business interruption (BI), network model, risk propagation, contingent
business interruption (CBI)

1 Introduction

Globalisation and the growing digitisation of supply chains are driving increased interdependencies which can
result in catastrophic losses when an event occurs and propagates through the economy. These disruptions
cost organisations around the world an average of 184 million U.S. dollars per company per year [1]. Recent
events such as floods and droughts, as well as the Covid pandemic and geopolitical conflicts, have further
highlighted the potential catastrophic nature of supply chain interruptions. The associated wide-spread
losses from these events are pushing companies, insurers and reinsurers to strive to better understand and
manage these risks and build in resilience measures to limit losses and reduce financial volatility.
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1.1 Literature Review 1 INTRODUCTION

In order to quantify companies’ supply chain risks, we need to calculate the probability and intensity of
business interruption and its potential propagation across trade networks, which can be complex in the case
of products with a large number of parts produced at different locations. Moreover, expressing the business
interruption risk in terms of financial impact assists in assessing the materiality of a risk and develop effective
mitigation solutions.

To assess and price these risks, commercial insurance companies may consider allocating business perfor-
mance values (gross profit or gross earnings) to a single location of an insured company. However, insurers
have limited information regarding the supply chain of their insureds, which limits their ability to accurately
quantify the risks stemming from interdependencies among the company’s locations (so-called indirect or
interdependent business interruption, BI) and/or suppliers’ locations (so-called contingent business inter-
ruption, CBI). CBI focused on dependence on lifelines is not typically available from insurance companies
despite increasing latent demand among large multinational corporations. The source of this supply-demand
imbalance arises from lack of reliable data and related pricing and risk models. Another challenge is to
quantify the redundancy of products, parts, and raw materials since an interruption’s impact on a supply
chain is highly influenced by these redundancy factors.

The more transparency insurers and reinsurers have regarding their individual client supply chain risk
exposures, the better they can support managing and mitigating accumulation risks and expand insurability
through better products and more comprehensive risk coverage. This said, the complexity of today’s global
supply chain networks cause corporations to struggle with understanding their own supply chain structures.
Insurers can use growing open-source and commercially available datasets to plug the information gap on
their clients’ supply chain. Another challenge in pricing insurance policies is the random nature of hazards
driving perils that cause loss. A wide range of perils ranging from shaking ground to fires can trigger a
supply chain disruption.

Insurers need frequency estimates of a given hazard, the downstream cascade of generated perils, the
expected impact to a given service level, and the estimated downtime arising from a given peril. Common
commercial and open-source natural catastrophe (NatCat) models offer business interruption (BI) estimates,
assuming production performance has been allocated to single locations without considering interdependen-
cies among suppliers or dependence on lifeline networks (e.g., power grids, transportation networks, etc.).
In practice, companies and re/insurers can consider distinguishing loss estimates in single targeted locations
derived using (increasingly typical) NatCat models from BI losses subject to propagation risks arising from
disruption to supply chain networks.

In order to respond to these emerging requirements and better quantify supply chain risks, improve
operational resilience, and profitably steer business in the context of complex supply chain dynamics, we
discuss the following in this paper:

1. Network model to quantify interruptions within a given supply chain network, taking into account
product dependencies and alternative suppliers ( 2.1)

2. Propagation model to quantify interruptions, conditional on probabilistic shocks at given nodes within
a supply-chain network ( 2.2).

3. Methodology to model expected production losses within a reference time window, given downtime
periods at each node ( 2.3).

4. Network resilience measures related to additional production capacities for products and materials in
the supply-chain network model ( 2.4).

5. Use of the developed propagation model with probabilistic inputs from a NatCat model ( 3).

1.1 Literature Review

Among the papers on supply chain business interruption, we recommend a conceptual paper [2] on expected
loss quantification. This paper stands out given its implementation of NatCat models. This said, these
authors do not address interdependencies among suppliers, dependence on lifeline networks, or the network
structure of the business operations within the company itself. (Note that nearly all published papers in
this area do not address interdependencies and dependencies in a network context.) The author proposes
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2 MODEL DEVELOPMENT

the use of HAZUS NatCat models, which enable the estimation of business downtime conditional on given
hazards, frequency of these hazards, and the impact level. The author proposes a case study on hurricanes
and calculates the expected business losses in 100 years via multiplying the expected BI value by the ratio
of the downtime and the length of the time window of interest at each hazard instance.

In contrast to the limited research conducted on BI and CBI quantification, there is extensive work
on supply chain risk management (SCRM). This research is mainly driven by the need for companies to
gain insights on supply chain disruption risks they face so as to manage, and where possible mitigate,
vulnerabilities. Several approaches for supply chain disruption (SCDR) modeling have been proposed to
measure the robustness and resilience of supply chains against NatCat and man-made risks. Desirable
features of SCDR models would include the ability to model interdependencies and risk propagation, as well
as quantify impact of hazardous events throughout a given network. Bayesian Belief graph-based models
in [3, 4, 5, 6] are promising candidates for the development of these desirable properties, given their ability
to reflect better the inherent interdependent network structure of supply chains.

The impact quantification or estimation of expected loss– particularly for manufacturers– requires the
integration of business downtime into relevant models. Recent works by authors in [5, 6] include the time
element into the modeling via the usage of Markov phase transition matrices on Bayesian Belief Networks.
Nevertheless, the commonality of existing research in SCDR models, including Bayesian Belief Network
models, is that they are not geared towards calculating disruption-driven expected losses for a manufac-
turer. Note that the main goal of SCRM research is not the estimation of business losses, but rather risk
quantification at each node of a network via different measures in order to predict and mitigate risks.

To fill this research gap, the goal of this work is to develop a propagation model to understand better
and measure the impact of hazardous events at each node of a given supply chain network, assuming the
downtime and functionality probabilities as described in 2.1 are available.

2 Model Development

We focus on a final product manufacturer that is producing a single good for retail only and the scenario
that a hazardous event H is inflicted on its supply chain. Our goal is to develop a model which allows us
to calculate the expected loss ratio in total production of the final product conditional on the impact of H
on the supply chain. We will begin with a simplifying assumption that the supply chain network for the
production of the final end product is a Fully Decomposed Supply-Chain Network (FDSN) that is defined
by the following conditions:

C1. Each plant in the network produces a single material/product and each plant in the network has a
direct or indirect contribution to the final end product.

C2. No product requires itself for its production at any stage of the manufacturing process.

C3. There are no loops in the supply chain network. In other words, a supplier can never appear to be the
buyer of the plants that sit at later stages of the production.

Remark. For the supply chain networks that do not satisfy condition C1, decomposing each multi producer
plant at network into its copies that produces a single product and carries the identical risk characteristics
is a potential remedy to make up for the separation that condition C1 introduces between FDSN’s and the
general supply chain networks. The implementation of this idea is postponed to future research. Condition
C2 is expected to hold on a more general network than an FDSN as it is self-evident and domain justified.
Conditions C1 and C2 together imply C3.

2.1 Network Setup

Definition 2.1. A directed acyclic graph G = (V,E) is a FDSN skeleton if it satisfies the following:

1. The vertex set V models the plants in a FDSN for which each plant produces a single product. This
set is partitioned into disjoint subsets,

V = {v0} ∪
( k⋃

j=1

Vj

)
,
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2.2 Impact Propagation Model 2 MODEL DEVELOPMENT

where each subset Vj consists of the vertices corresponding to the plants producing the same product
(alternative suppliers of the same product) and the vertex v0 corresponds to the only plant that
produces the final end product. This set also determines k to be the number of products required to
produce the final end product. .

2. The edge set E models the supplier/buyer relationships in a FDSN where a directed edge e = (u, v) ∈ E
from u ∈ V to v ∈ V is defined when the plant corresponding to v sources a product from the plant
corresponding to u.

Definition 2.2. Let G = (V,E) be an FDSN skeleton; Sv = {u ∈ V | (u, v) ∈ E} and Bv = {u ∈ V | (v, u) ∈
E} are defined to be, respectively, the supplier and buyer neighborhood of the plant corresponding to v ∈ V .

Definition 2.3. Given the FDSN skeleton G = (V,E) and the exogenous set of constants {αv ≥ 0 | v ∈
V } corresponding to excess capacity of each plant in the FDSN, functionality is defined via the function
F : V → R+ and consignment weights are defined via the function C : E → [0, 1] where the following are
satisfied:

1. For every j ∈ {1, 2, .., k} ∑
u∈Vj

∑
v∈Bu

C(u, v) = 1. (1)

2. For each node v ∈ V ,
F (v) ≤ 1 + αv. (2)

Given this set up, a triplet (G,F,C) is defined as an FDSN instance.

Remark. The functionality weights assigned to each node identify the extent to which the nodes are op-
erational. For example, if F (v) = 1 the node is fully operational while if F (v) = 0 then the node is
non-operational. Consignment weights, on the other hand, are assigned to the edges and identify agreed
amounts of goods to be delivered by the supplier. Weights are normalised so that each product’s output
totals to 1 units. With this normalisation, 1 unit of final end product depends on 1 unit of each product
type in the network.

While introducing the time element, we restrict our attention to the case in which the skeleton G and
the pre-agreed consignment weights C are fixed whereas the functionality of nodes may vary. This is a
conservative assumption given that actual companies are likely to establish new trade relationships if business
interruptions occur.

Given that we include a time element, we consider the product flow as the instant feed of the materials
between the nodes according to the amounts prescribed by the consignment weights. The consignments
construct the supply network to produce 1 unit of the final end product for each unit of time when each
plant is fully operational. We set the unit of time as 1 day but we are not restricting the model to discrete
flow of time. The unit of final end product is selected so that the total production of the network in the
time window of interest (e.g. a year) will correspond to the forecasted total production.

Definition 2.4. Let G = (V,E) be a FDSN skeleton. Let (Ω,F ,P) be a probability space and F = (Ft)t∈[0,T ]

be a filtration of the σ-algebras Ft. Furthermore, set Ft : Ω× V → [0, 1] such that for each v ∈ V , Ft( , v)
is a stochastic process adapted to the filtration F. Now we define an adapted stochastic FDSN process
N = (Nt)t∈[0,T ] by Nt = (G,Ft, C) where we require Nt(ω) = (G,Ft(ω, ), C) to be a FDSN instance for
every choice of t ∈ [0, T ] and ω ∈ Ω.

2.2 Impact Propagation Model

As we have an adapted stochastic FDSN process Nt, at each instance Nt(ω) we have an instantaneous
production rate of each plant that does not have to be equal to the functionality of the plant. At the end,
the production rate should have two inputs; the functionality of the plant and the flow of supplies. We will
provide a well suited recursive definition for the production rate potential of each plant in the FDSN skeleton
G including the final end node v0 responsible for producing the final end product.
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2.2 Impact Propagation Model 2 MODEL DEVELOPMENT

Definition 2.5. Let Nt = (G,Ft, C) be a stochastic FDSN process adapted to the filtration F. We define the
production rate potential of each plant as a stochastic process Pt : Ω× V → R+ via the following recursion,

Pt(ω, v) = Ft(ω, v) ∀v s.t. Sv = ∅, (3)

Pt(ω, v) = min

(
Ft(ω, v),

{ ∑
v̂∈Sv∩Vi

Pt(ω, v̂)C(v̂, v)∑
v̂∈Sv∩Vi

C(v̂, v)

∣∣∣∣ i = 1, 2, .., k

})
∀v s.t. Sv ̸= ∅, (4)

Remark. Note that the recursion calculates the potential of each plant, that can be truncated by its buyers
in the recursion. For example, if the plant is able to produce 100% of its consignments but the buyers are
only 50% operational, that would reduce the production of the plant accordingly through lack of demand.
We assume that, prior the impact, the assembly plant is optimised to produce the retail demand and has
no room to go beyond its capacity. In other words, αv0 = 0 and hence when the recursion reaches the final
end node, the calculated production rate potential Pt(ω, v0) ≤ Ft(ω, v0) ≤ 1 + αv0 = 1 is realised since the
demand from the final end node is fixed to 1 unit at each instance. Therefore under the assumption on
the retail demand and the excess capacity of the final end producer, the forward recursion defined in the
definition 2.5, able to express the realised production rate of the final end producer corresponding to vertex
v0.

Given a stochastic FDSN process we can now write down the loss ratio in total production of the final
end node v0 for a given time window [0, T ] as,

L(ω) = 1

T

T∫
0

(1− Pt(ω, v0))dt = 1− 1

T

T∫
0

Pt(ω, v0)dt. (5)

Proposition 2.1. The quantity Pt(ω, v) given in definition 2.5 is well defined for every v ∈ V . In other
words, the recursive procedure reaches every vertex of the graph.

Proof. Fix ω ∈ Ω and define a set L ⊂ V to be the set of vertices where the quantity Pt(ω, v) is defined.
By the initial step of the recursion given in definition 2.5, we know that set of leafs, {v ∈ V | Sv = ∅} is a
subset of L.

Assume to the contrary that ∃v ∈ V \L. Then Sv ̸= ∅ and ∃v1 ∈ Sv such that v1 /∈ L. Similarly, that
implies Sv1 ̸= ∅ and ∃v2 ∈ Sv1 such that v2 /∈ L. Continuing in this fashion, we generate an infinite sequence
of vertices {vi}∞i=0 ⊂ V \L and the vertices form an infinite path. As |V | < ∞ dictates, the vertices in the
sequence has to be repeated. This, in turn, creates a cycle that contradicts the acyclic assumption of G. As
the vertex v is arbitrary, we conclude that V \L = ∅ and hence V = L. This finalises the proof.

The following corollary serves as a sanity check of the recursive definition in 2.5. When all plants are
operational, the production rate potentials across the whole network are expected to be 1 and the recursive
definition at 2.5 is in line with that.

Corollary. Let Nt = (G,Ft, C) where Ft(ω, v) = 1 for each v ∈ V and ω ∈ Ω. Then Pt(ω, v) = 1 for each
v ∈ V and ω ∈ Ω.

Proof. Lets now define K = {v ∈ V | P0(ω, v) = 1 ∀ω ∈ Ω}. From the initial step of the recursion we get
{v ∈ V | Sv = ∅} ⊂ K. Arguing similarly in the proof of the proposition 2.1 lets assume that there exist
v ∈ V \K. As we know recursion reaches to v by the proposition 2.1, it implies Sv ̸= ∅ and ∃v1 ∈ Sv\K.
Note that other wise if Sv ⊂ K the recursion implies v ∈ K as well. Continuing this fashion we construct
an infinite sequence of vertices {vi}∞i=1 that also form an infinite path. As |V | < ∞ dictates, the vertices in
the sequence has to be repeated. That creates a cycle that contradicts with the acyclic assumption of G.
This shows v ∈ K. As the vertex v where arbitrary, we conclude that V = K. Hence we get P0(ω, v) = 1
for every v ∈ V including the final end node v0.

Now we provide an example to illustrate the definition 2.5.
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2.3 Modeling the Impact 2 MODEL DEVELOPMENT

Example 2.1. Assume the supply chain network of our end product v0 (Node 0) shown in Figure 1. In
this network, the nodes starting with same numbers produce the same product, e.g. plant v4 and v4.1 both
produce product number 4 so that V4 = {v4, v4.1} and the numbers on the links show the consignment
weights C. It exemplifies an FDSN instance taken at some time t ∈ [0, T ] for a fixed ω from an FDSN
process. Moreover, we set all nodes except nodes v3, v4.1 and v5 to be fully functional. By Equation (4) the
production rate of nodes v4.1 and v5 would be equal to 0 and the production rate of nodes v1, v4, v5.1, v6 and
v7 is equal to 1. The production rate of other nodes is as follow:

Pt(v2, ω) = min{Ft(v2, ω), 0.19 ∗ Pt(v4, ω) + 0.81 ∗ Pt(v4.1, ω), Pt(v6, ω)} = 0.19

Pt(v3, ω) = min
{
Ft(v3, ω), Pt(v7, ω),

0.31 ∗ Pt(v5, ω) + 0.19 ∗ Pt(v5.1, ω)

0.5

}
= 0

Pt(v3.1, ω) = min
{
Ft(v3.1, ω),

0.11 ∗ Pt(v5, ω) + 0.39 ∗ Pt(v5.1, ω)

0.5
, Pt(v7, ω)

}
= 0.78

Pt(v0, ω) = min{Ft(v0, ω), Pt(v1, ω), Pt(v2, ω), 0.6 ∗t (v3, ω) + 0.4 ∗ Pt(v3.1, ω)} = 0.19

Figure 1: An example of a supply chain network dependencies

2.3 Modeling the Impact

For a given a supply chain network, we consider the impact of a hazardous event to each production plant
using random variables determining the likelihood of a hit and the production plant downtime caused by the
event. We consider the scenario that the impacted nodes recover fully after the downtime passes and during
this phase no mitigating actions are taken from the non-impacted nodes.

Let Nt = (G,Ft, C) be a stochastic FDSN process adapted to the filtration F = {Ft} that carries the
growing information with time. Next, we consider the arrival of the hazard at time 0 and condition all
the analysis on this event. Let δv ∈ {0, 1} and dv ∈ R+ be random variables that determine impact and
associated downtime, respectively. The values 0 and 1 for δv correspond to a hit and no hit, respectively.
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2.4 In-Network Resilience 3 IMPLEMENTATION OF THE PROPAGATION MODEL

For completeness, we set the downtime dv to 0 when there is no hit. With this set up, we model the impact
via setting the functionality as,

Ft(ω, v) = δv(ω)1{t<dv(ω)} + 1{dv(ω)≤t}. (6)

Each impacted plant will disrupt its own buyers and the impact will propagate downstream via the recursive
definition of the production rate Pt of Equation (4).

Each ω ∈ Ω, will realise the random list of downtimes. Let d0, d1, ..., d|V |−1 be the ordered statistics of
the realised downtimes {dv(ω)}v∈V with 0 ≤ d0 ≤ d1 ≤ ... ≤ d|V |−1 ≤ T . We have Ft(ω, v) remain static on
the intervals t ∈ [di−1, di] by its definition above. The same feature is carried over to the production rate
Pt(ω, v) through Equation (3) and Equation (4). Hence, following the formulation in Equation (5) we have
for each ω ∈ Ω the loss ratio in total production L, which simplifies to

L(ω) = 1− 1

T

T∫
0

Pt(ω, v0)dt = T −
|V |−1∑
i=1

(di − di−1)Pdi−1
(ω, v0) (7)

We write an expected loss ratio conditioned on the arrival of the hazard at time 0, denoted by the event H,
as follows:

E[L|H] = E
[
T −

|V |−1∑
i=1

(di − di−1)Pdi−1
(ω, v0)

∣∣H] . (8)

Example 2.2. Recall the FDSN instance in Example 2.1 and release the fixed time t to realise an FDSN
process at the fixed random state ω. In this case, we set the length of the time window T to 12 and
assume that the affected nodes have downtimes realised as dv4.1 = 5, dv3(ω) = 8 and dv5(ω) = 12. We
want to calculate the loss ratio in total production of node v0 over time [0, 12]. Following the formula in
Equation (7), we first need to calculate the production rate of node v0 on times 0, 5 and 8. Using the example
2.1, we have P0(v0, ω) = 0.19. At time 5 node v4.1 will be fully functional and only nodes v3 and v5 remain
non-functional. In this situation P5(v2, ω) = 1 and P5(v0, ω) = 0.6 ∗ P5(v3, ω) + 0.4 ∗ P5(v3.1, ω) = 0.312. At
time 8 node v3 will be functional and node v5 would be the only non-functional node. Thus, F8(v3, ω) = 1
and P8(v3, ω) = 0.38. As a result, P8(v0, ω) = 0.6∗P8(v3, ω)+0.4∗P8(v3.1, ω) = 0.6∗0.38+0.4∗0.78 = 0.54.
The loss ration in total production for a given ω is:

L(ω) =
1

12

[
12− (5− 0) ∗ P0(v0, ω) + (8− 5) ∗ P5(v0, ω) + (12− 8) ∗ P8(v0, ω)

]
=

7.954

12
∼ 0.66

2.4 In-Network Resilience

In this subsection we will briefly discuss the scenario that allows plants in the network to increase their
capacity to compensate for impacted nodes– but only through already established links. The plants that will
compensate for the impacted plants will need to increase capacity and source more supplies. We will allow
them to source more supplies from their established suppliers proportional to their previous trade volumes.
If, for example, a supplier has an excess capacity of 10% and the buyer plant was sourcing 50% of its need
from that supplier, then the supplier in our model will be able to send 55% of the buyer’s need to produce
one unit. This can be integrated into the baseline model by setting the functionality as,

Ft(v) = (1 + αv)
[
δv1{t<dv} + 1{dv≤t}

]
. (9)

This functional process choice will lead to the calculation of the maximum possible production rate for the
final end node that can be reached via in-network resilience measures.

3 Implementation of the Propagation Model

In this section, we illustrate a simple network example. In this context, we perform numerical implementation
of a model that calculates expected loss ratios conditional on hazardous events. This example focuses on

7
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earthquakes. For the hazard-model component, we use the Hazus Earthquake Model (HAZUS-EM [7]). The
experiments will be performed on a fixed network example for a catalog of events. Given an FDSN skeleton
G = (V,E), we define a footprint of an event H as,

KH = {(v, θv) | v ∈ V, θv ∈ [0, 0.5]} (10)

where v ∈ V is the node and θv determines the Peak Ground Acceleration (PGA in fractions of ground
acceleration, i.e. 9.81) magnitude that the earthquake delivers to the represented sites. We define the
catalog of events H as a collection of events H.

3.1 HAZUS Earthquake Model

The HAZUS Earthquake Model (HAZUS-EM) models the fragility curve of each building type as a probability
of receiving or exceeding a damage state conditioned on the PGA magnitude delivered to the site,

P(X ≥ s|θ) = ϕ
( 1
β s

ln

(
θ

θ̄s

))
(11)

where

• X is a discrete random variable that determines the damage state of the building. It has the event
space as the damage states ordered as

none < slight < moderate < extensive < complete

and s stands for a fixed damage state from the above list.

• θ is the PGA in unit of g that impact buildings.

• θ̄s is the median value of PGA at which the building reaches the threshold of the damage state s. In
other words, when PGA value θ is the same as θ̄s then the probability of the building being in the
damage state greater or equal than s is 0.5

• βs is the standard deviation of the natural logarithm of the damage state s.

• ϕ is the standard normal cumulative distribution function.

The constants θ̄s and βs for each damage state s are estimated a priori and provided by HAZUS-EM
in Table 1. Conditional on the random variable X, it provides estimates of the median downtime of each
business type in Table 2.

3.2 Network construction and input selection

We consider an FSDN on a time interval of T consecutive days where an earthquake is assumed to have
struck on day 0. This is represented by an FDSN process Nt = (G,Ft, C) with the skeleton G and the
consignment weights C as displayed in Figure 2. In order to provide the random variables δv and dv for each
node, HAZUS-EM requires the input of the business type and the building type corresponding to the plants
presented by the nodes. We accommodate this state as below:

• For the nodes in our network, we select several arbitrary industrial categories, i.e. IND1 (Heavy
Industrial), IND2 (Light Industrial), IND4 (Metals/Minerals Processing) and IND5 (High Technology)
which are color coded in the graph of Figure 2.

• For simplicity, all nodes in our network have the same building type– steel frame building with up to
3 stories and moderate-code seismic design level (S2L according to HAZUS-EM).

8



3.3 Monte Carlo Simulation 4 CONCLUSIONS

3.3 Monte Carlo Simulation

For a time horizon of T days and an event catalog H = {H1, H2, ...,H10} of size 10 with the corresponding
footprints as presented in Table 3. For each arrival of an event H ∈ H at beginning of the time window, we
perform a Monte Carlo simulation to calculate the expected conditional loss ratio E[L|H]. We outline the
steps of the simulation for an arbitrary event H ∈ H as below.

1. We populate a sample of damage states of each node in the skeleton G,

{x1
v}v∈V , {x2

v}v∈V , ..., {xn
v}v∈V

from the collection of random variables {Xv}v∈V where each Xv has the cumulative probability distri-
bution adopted from Equation (11),

P(Xv > s) = ϕ

(
1

βs
ln
(θv
θ̄s

))
(12)

where θv is retrieved from the footprint KH and the constants βs and θ̄s are looked up from Table 1
for each damage state. Note that they remain the same for each node as we assumed a single building
type, S2L.

2. For each sampled {xi
v}v we derive δiv = 1{xi

v=none} and look up the downtime div from the Table 2

through the corresponding damage state xi
v and the business type of the node v. We build up the

functionality processes for each node.

3. Feeding the functionality processes into the recursive definition 4, and using the equation 7, we calculate
the loss ratio in total production Li associated with each sampled {xi

v}v.

4. The Monte Carlo estimate of the expected loss ratio E[L|H] conditioned on the hazardous event H is

1

n

n∑
i=1

Li.

We set T = 360 and we consider two scenarios on the functionality processes. First one is, we assume no
extra capacity in the function as in Equation (6). In the other scenario, we allow the extra capacity of each
node to enter in the functionality as in Equation (9) where we assume a homogeneous extra capacity of %10
to each node. For each of the above scenarios and for each hazard H in the event catalog H, we perform
the above implementation 4 times, once for each quarter of the time interval [0, T ]. We present the results
in Table 4.

4 Conclusions

We have developed a framework that may be considered in the context of calculating expected losses in total
production for final end manufacturers in an FDSN conditional to probabilistic shocks at given nodes within
a specific supply-chain network.

Key benefits of our propagation model include:

1. Accounts for alternative suppliers and additional production capacity within a network.

2. Integrates the time element through an instant feed structure.

3. Distinguishes between the functionality and production rate potential of a plant as the latter is subject
to network effects.

4. Compatible with NatCat models and can be used as a complementary module to better estimate
business interruption (BI) losses with interdependency effects. The former capability is illustrated on
simple network data where our model is paired with HAZUS-EM.

5. Developed in a way that the functionality process introduced in Equation (6) in Section 2.3 actually
works with any functionality/downtime making it flexible enough to use with non-NatCat models.
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4.1 Future expansions and extensions

Our propagation model is based on the assumption that the FDSN remains static, meaning companies do
not establish new trade relationship after events. The current propagation mechanism flows from suppliers
to buyers, following the production materials (forward propagation). The model is not able to calculate
production rates in case of reduced demand from customers (backward propagation). The model assumes
instant feed and ignores the geographical distances between nodes, time-depending variations in production,
and any buffer in the network. Moreover, the recursion process to calculate production rates is deterministic.

Future research could explore:

• Introducing other resilience features to allow for the possibility that companies can establish new trade
relationships, in order to relax the assumption of the static FDSN.

• Creating a mechanism for backward propagation.

• Extending the model with less restrictive assumptions on the lags in material flow due to distance and
additional buffers.

• Extending the recursion process to take into account probabilistic variables.

Disclaimer

Although all the information discussed herein was taken from reliable sources, the authors and the insti-
tutions they are connected to, do not accept any responsibility for the accuracy or comprehensiveness of
the information given or forward-looking statements made. The information provided and forward-looking
statements made are for informational purposes only and in no way constitute or should be taken to reflect
the positions of the authors or the institutions they are connected to, in particular in relation to any ongoing
or future dispute. In no event shall the authors or the institutions they are connected to, be liable for any
financial or consequential loss or damage arising in connection with the use of this information and readers
are cautioned not to place undue reliance on forward-looking statements. The authors and the institutions
they are connected to, undertake no obligation to publicly revise or update any forward-looking statements,
whether as a result of new information, future events or otherwise.
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Table 1: Equivalent-PGA Structural Fragility for Building Type S2L (adopted from Table 5-28 in [7])

Damage State(s) Median Equivalent PGA(θs) Log Standard Deviation(βs)
Slight 0.20 0.64
Moderate 0.26 0.64
Extensive 0.46 0.64
Complete 0.84 0.64

Table 2: Building Median Downtime Based on Business Type and Damage State (adopted from Table 11.8
and 11.9 in [7])

Damage State
Slight Moderate Extensive Complete

Heavy Industrial 5 90 240 360
Light Industrial 1 18 72 144

Metals/Minerals Processing 2 18 72 144

’B
u
si
n
es
s

”
”
T
yp

e

High Technology 4 27 108 216

Table 3: The Event Catalog H

H1
Affected Node (v) 2.1 4.1 7.1 10 13.2 15.1
PGA (θv) 0.220 0.190 0.250 0.140 0.140 0.100

H2
Affected Node (v) 4.2 8 11 12 16 17.2
PGA (θv) 0.4796 0.4513 0.3775 0.1690 0.0491 0.3610

H3
Affected Node (v) 4 4.1 7 9 10.1 15.1
PGA (θv) 0.3037 0.194 0.1976 0.4222 0.1752 0.2417

H4
Affected Node (v) 3 4.2 6 7.1 13.2 16
PGA (θv) 0.3902 0.0378 0.3911 0.3072 0.1086 0.3748

H5
Affected Node (v) 3.1 4.1 6 10 14 -
PGA (θv) 0.3262 0.4776 0.0779 0.1537 0.4075 -

H6
Affected Node (v) 3 6 12 15.2 16 -
PGA (θv) 0.0224 0.1418 0.214 0.3414 0.0838 -

H7
Affected Node (v) 2 4.2 7 9 11 12
PGA (θv) 0.261 0.3514 0.1639 0.1152 0.4986 0.3995

H8
Affected Node (v) 4.2 6 9 13 13.1 -
PGA (θv) 0.0483 0.2452, 0.1542 0.2241 0.2607 -

H9
Affected Node (v) 6.2 7 8 10 11.1 17.1
PGA (θv) 0.1035 0.4941 0.4135 0.0442 0.3857 0.3164

H10
Affected Node (v) 2.1 6 8 11.1 - -
PGA (θv) 0.3530 0.2060 0.4570 0.4120 - -
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Figure 2: supply chain network used in model implementation
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Table 4: Quarterly Expected Loss Ratio Corresponding to Events in Event Catalog

Event Capacity Q1 Q2 Q3 Q4

H1

Normal 19.4 3.2 1.6 0.0

Extra (10%) 17.2 2.3 0.9 0.2

H2

Normal 60.1 23.6 6.6 0.0

Extra (10%) 60.0 23.5 6.6 0.0

H3

Normal 45.4 8.4 0.0 0.0

Extra (10%) 45.4 8.4 0.0 0.0

H4

Normal 49.8 15.9 8.5 3.2

Extra (10%) 47.3 13.5 6.3 2.4

H5

Normal 55.1 19.7 5.2 0.0

Extra (10%) 54.8 19.5 5.2 0.0

H6

Normal 20.8 3.0 0.6 0.0

Extra (10%) 19.2 2.6 0.5 0.0

H7

Normal 64.3 27.6 13.3 2.8

Extra (10%) 64.3 27.6 13.3 2.8

H8

Normal 22.6 5.1 3.3 0.8

Extra (10%) 20.0 4.0 2.4 0.6

H9

Normal 56.1 20.3 5.4 0.0

Extra (10%) 55.6 20.1 5.4 0.0

H10

Normal 61.9 26.0 11.1 2.0

Extra (10%) 60.8 24.9 9.7 1.3
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