A Two-Player Price Impact Game

Moritz Voss

UC Santa Barbara

CDAR Seminar January 28, 2020

Single Player Problem

Bank, Soner, V. ('17)

For a given predictable $\xi \in L^2(\mathbb{P} \otimes dt)$ and given $x \in \mathbb{R}$, $\sigma > 0$, $\lambda > 0$, $\gamma > 0$, find an absolutely continuous, adapted process $X = x + \int_0^\infty \alpha_t dt$ with $\alpha \in L^2(\mathbb{P} \otimes dt)$ which minimizes

$$\mathbb{E}\left[\int_0^T (X_t - \xi_t)^2 \sigma \, dt + \lambda \int_0^T \alpha_t^2 \, dt + \gamma \int_0^T \alpha_t \cdot (X_t - x) \, dt\right]$$

subject to $X_T = \Xi_T$ for some given $\Xi_T \in L^2(\mathscr{F}_{T-}, \mathbb{P})$.

Single Player Problem

Bank, Soner, V. ('17)

For a given predictable $\xi \in L^2(\mathbb{P} \otimes dt)$ and given $x \in \mathbb{R}$, $\sigma > 0$, $\lambda > 0$, $\gamma > 0$, find an absolutely continuous, adapted process $X = x + \int_0^\infty \alpha_t dt$ with $\alpha \in L^2(\mathbb{P} \otimes dt)$ which minimizes

$$\mathbb{E}\left[\int_0^T (X_t - \xi_t)^2 \sigma \, dt + \lambda \int_0^T \alpha_t^2 \, dt\right]$$

subject to $X_T = \Xi_T$ for some given $\Xi_T \in L^2(\mathscr{F}_{T-}, \mathbb{P})$.

Single Player Problem

Bank, Soner, V. ('17)

For a given predictable $\xi \in L^2(\mathbb{P} \otimes dt)$ and given $x \in \mathbb{R}$, $\sigma > 0$, $\lambda > 0$, $\gamma > 0$, find an absolutely continuous, adapted process $X = x + \int_0^\infty \alpha_t dt$ with $\alpha \in L^2(\mathbb{P} \otimes dt)$ which minimizes

$$\mathbb{E}\left[\int_0^T (X_t - \xi_t)^2 \sigma \, dt + \lambda \int_0^T \alpha_t^2 \, dt\right]$$

subject to $X_T = \Xi_T$ for some given $\Xi_T \in L^2(\mathscr{F}_{T-}, \mathbb{P})$.

References:

Kohlmann/Tang ('02), Rogers/Singh ('10), Frei/Westray ('13), Horst/Naujokat ('14), Almgren/Li ('14), Cartea/Jaimungal ('15), Bank/Soner/V. ('17), . . .

Single Player Problem: Solution

Theorem (Bank, Soner, V. ('17))

Under suitable assumptions the optimal control $\hat{\alpha}$ with strategy $\hat{X}=x+\int_0^{\cdot}\hat{\alpha}_t dt$ is given by

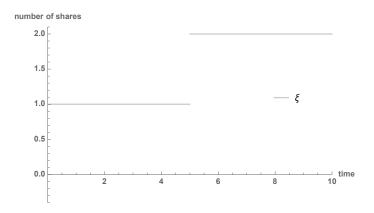
$$\hat{\alpha}_t = \tilde{c}_t \cdot \left(\hat{\xi}_t - \hat{X}_t\right)$$

with deterministic function $ilde{c}_t>0$ satisfying $\lim_{t\uparrow\mathcal{T}} ilde{c}_t=+\infty$ and

$$\hat{\xi}_t = \tilde{w}_t^1 \cdot \mathbb{E}\left[\Xi_T \left| \mathscr{F}_t \right] + \tilde{w}_t^2 \cdot \mathbb{E}\left[\int_t^T \xi_s \cdot \tilde{K}(t,s) \, ds \left| \mathscr{F}_t \right] \right]$$

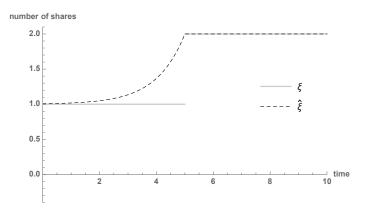
with deterministic nonnegative weights $\tilde{w}_{\cdot}^{1} + \tilde{w}_{\cdot}^{2} = 1$, $\lim_{t \uparrow T} \tilde{w}_{t}^{1} = 1$, $\lim_{t \uparrow T} \tilde{w}_{t}^{2} = 0$ and deterministic kernel \tilde{K} .

Illustration: Stock-Buying Schedule



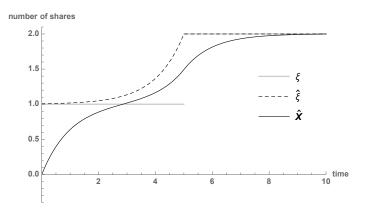
Single player:
$$x=0$$
, $\xi_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi_T=2$.

Illustration: Stock-Buying Schedule



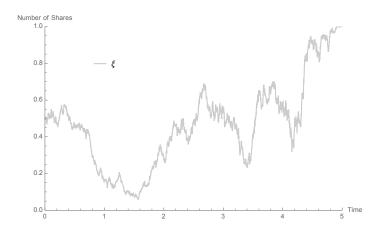
Single player:
$$x=0$$
, $\xi_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi_T=2$.

Illustration: Stock-Buying Schedule



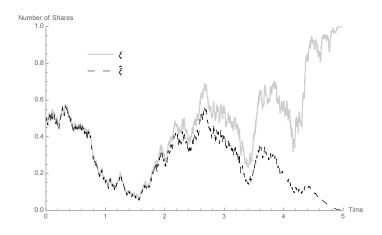
Single player:
$$x=0$$
, $\xi_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi_T=2$.

Illustration: Running after the delta



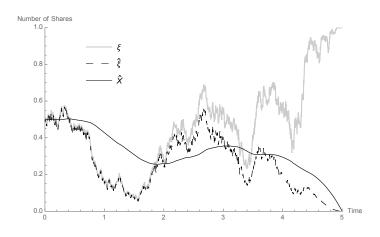
Single player:
$$x = 1/2$$
, $\xi_t = \Phi\left(\frac{P_t - P_0}{\sqrt{\sigma(T - t)}}\right)$, $\Xi_T = 0$.

Illustration: Running after the delta



Single player:
$$x = 1/2$$
, $\xi_t = \Phi\left(\frac{P_t - P_0}{\sqrt{\sigma(T - t)}}\right)$, $\Xi_T = 0$.

Illustration: Running after the delta



Single player:
$$x=1/2$$
, $\xi_t=\Phi\Big(\frac{P_t-P_0}{\sqrt{\sigma(T-t)}}\Big)$, $\Xi_T=0$.

Player 1:
$$X^1 = x^1 + \int_0^{\cdot} \alpha_t^1 dt$$
 and targets ξ^1 , Ξ_T^1

$$J^{1}(\alpha^{1}) \triangleq \mathbb{E}\left[\int_{0}^{T} (X_{t}^{1} - \xi_{t}^{1})^{2} \sigma dt + \lambda \int_{0}^{T} \alpha_{t}^{1} \cdot (\alpha_{t}^{1}) dt\right]$$

Player 1:
$$X^1 = x^1 + \int_0^{\cdot} \alpha_t^1 dt$$
 and targets ξ^1 , Ξ_T^1

$$\begin{split} J^{1}(\alpha^{1}, \alpha^{2}) &\triangleq \mathbb{E}\left[\int_{0}^{T} (X_{t}^{1} - \xi_{t}^{1})^{2} \sigma dt \right. \\ &+ \lambda \int_{0}^{T} \alpha_{t}^{1} \cdot \left(\alpha_{t}^{1} + \alpha_{t}^{2}\right) dt + \gamma \int_{0}^{T} \alpha_{t}^{1} \cdot \left(X_{t}^{2}\right) dt \right] \rightarrow \min_{s.t. X_{0}^{1} = x_{t}^{1}, X_{T}^{1} = \frac{1}{T}} \end{split}$$

Player 2:
$$X_t^2 = \int_0^{\infty} \alpha_t^2 dt$$

Player 1:
$$X^1 = x^1 + \int_0^{\cdot} \alpha_t^1 dt$$
 and targets ξ^1 , Ξ_T^1

$$\begin{split} J^{1}(\alpha^{1},\alpha^{2}) &\triangleq \mathbb{E}\left[\int_{0}^{T} (X_{t}^{1} - \xi_{t}^{1})^{2} \sigma dt \right. \\ &+ \lambda \int_{0}^{T} \alpha_{t}^{1} \cdot \left(\alpha_{t}^{1} + \alpha_{t}^{2}\right) dt + \gamma \int_{0}^{T} \alpha_{t}^{1} \cdot \left(X_{t}^{2}\right) dt \right] \rightarrow \min_{s.t.\ X_{0}^{1} = x_{t}^{1},\ X_{T}^{1} = \Xi_{T}^{1}} \end{split}$$

Player 2:
$$X_{\cdot}^2 = \int_0^{\cdot} \alpha_t^2 dt$$

$$J^{2}(\alpha^{1}, \alpha^{2}) \triangleq \mathbb{E}\left[\int_{0}^{T} (X_{t}^{2})^{2} \sigma dt + \lambda \int_{0}^{T} \alpha_{t}^{2} \cdot \left(\alpha_{t}^{1} + \alpha_{t}^{2}\right) dt + \gamma \int_{0}^{T} \alpha_{t}^{2} \cdot \left(X_{t}^{1} - x^{1}\right) dt\right] \rightarrow \min_{\substack{\alpha \in X_{t}^{2} = 0 \\ s \neq x_{t}^{2} = 0}} \alpha_{t}^{2}$$

Player 1: $X^1 = x^1 + \int_0^{\cdot} \alpha_t^1 dt$ and targets ξ^1 , Ξ_T^1

$$\begin{split} J^{1}(\alpha^{1},\alpha^{2}) &\triangleq \mathbb{E}\left[\int_{0}^{T} (X_{t}^{1} - \xi_{t}^{1})^{2} \sigma dt \right. \\ &+ \lambda \int_{0}^{T} \alpha_{t}^{1} \cdot \left(\alpha_{t}^{1} + \alpha_{t}^{2}\right) dt + \gamma \int_{0}^{T} \alpha_{t}^{1} \cdot \left(X_{t}^{2} - \mathbf{x}^{2}\right) dt\right] \xrightarrow[s.t. X_{0}^{1} = \mathbf{x}^{1}, X_{T}^{1} = \frac{1}{T}]{} \end{split}$$

Player 2: $X^2 = \mathbf{x}^2 + \int_0^{\infty} \alpha_t^2 dt$ and targets ξ^2 , Ξ_T^2

$$\begin{split} J^2(\alpha^1, \alpha^2) &\triangleq \mathbb{E}\left[\int_0^T (X_t^2 - \xi_t^2)^2 \sigma dt \right. \\ &+ \lambda \int_0^T \alpha_t^2 \cdot \left(\alpha_t^1 + \alpha_t^2\right) dt + \gamma \int_0^T \alpha_t^2 \cdot \left(X_t^1 - x^1\right) dt\right] &\rightarrow \min_{\substack{\alpha^2 \\ \text{s.t. } X_0^2 = x^2, \, X_T^2 = \equiv_T^2}} \end{split}$$

Player 1: $X^1 = x^1 + \int_0^x \alpha_t^1 dt$ and targets ξ^1 , Ξ_T^1

$$\begin{split} J^{1}(\alpha^{1}, \alpha^{2}) &\triangleq \mathbb{E}\left[\int_{0}^{T} (X_{t}^{1} - \xi_{t}^{1})^{2} \sigma dt \right. \\ &+ \lambda \int_{0}^{T} \alpha_{t}^{1} \cdot \left(\alpha_{t}^{1} + \alpha_{t}^{2}\right) dt + \gamma \int_{0}^{T} \alpha_{t}^{1} \cdot \left(X_{t}^{2} - x^{2}\right) dt\right] \xrightarrow{\alpha_{t}^{1}} \min_{s.t. X_{0}^{1} = x^{1}, X_{T}^{1} = \frac{1}{T}} \end{split}$$

Player 2: $X^2 = x^2 + \int_0^x \alpha_t^2 dt$ and targets ξ^2 , Ξ_T^2

$$\begin{split} J^2(\alpha^1, \alpha^2) &\triangleq \mathbb{E}\left[\int_0^T (X_t^2 - \xi_t^2)^2 \sigma dt \right. \\ &+ \lambda \int_0^T \alpha_t^2 \cdot \left(\alpha_t^1 + \alpha_t^2\right) dt + \gamma \int_0^T \alpha_t^2 \cdot \left(X_t^1 - x^1\right) dt\right] &\rightarrow \min_{\text{s.t. } X_0^2 = x^2, X_T^2 = \Xi_T^2} \end{split}$$

Two strategic agents are competing for liquidity!

Nash equilibrium

A pair of admissible strategies $(\hat{\alpha}^1, \hat{\alpha}^2)$ is called a **Nash** equilibrium for the game if for all admissible strategies α^1 , α^2 we have

$$J^1(\hat{\alpha}^1,\hat{\alpha}^2) \leq J^1(\alpha^1,\hat{\alpha}^2) \quad \text{and} \quad J^2(\hat{\alpha}^1,\hat{\alpha}^2) \leq J^2(\hat{\alpha}^1,\alpha^2),$$

that is, neither player has an incentive to deviate from $(\hat{\alpha}^1, \hat{\alpha}^2)$.

Nash equilibrium

A pair of admissible strategies $(\hat{\alpha}^1, \hat{\alpha}^2)$ is called a **Nash** equilibrium for the game if for all admissible strategies α^1 , α^2 we have

$$J^1(\hat{\alpha}^1,\hat{\alpha}^2) \leq J^1(\alpha^1,\hat{\alpha}^2) \quad \text{and} \quad J^2(\hat{\alpha}^1,\hat{\alpha}^2) \leq J^2(\hat{\alpha}^1,\alpha^2),$$

that is, neither player has an incentive to deviate from $(\hat{\alpha}^1, \hat{\alpha}^2)$.

Note: We will only consider an open loop Nash equilibrium!

Player 1 ("distressed trader"): $x^1>0$, $\Xi_T^1=0, \xi^1\equiv 0$ Player 2 ("predator"): $x^2=\Xi_T^2=0, \xi^2\equiv 0$

Player 1 ("distressed trader"): $x^1>0$, $\Xi_T^1=0, \xi^1\equiv 0$ Player 2 ("predator"): $x^2=\Xi_T^2=0, \xi^2\equiv 0$

Explicit results:

1. Carlin, Lobo, Viswanathan ('07): risk-neutral ($\sigma=0$), deterministic open loop

Player 1 ("distressed trader"): $x^1>0$, $\Xi_T^1=0, \xi^1\equiv 0$ Player 2 ("predator"): $x^2=\Xi_T^2=0, \xi^2\equiv 0$

Explicit results:

- 1. Carlin, Lobo, Viswanathan ('07): risk-neutral ($\sigma = 0$), deterministic open loop
- 2. Schied & Zhang ('14): mean-variance optimization ($\sigma > 0$), deterministic open loop

Player 1 ("distressed trader"): $x^1>0$, $\Xi_T^1=0, \xi^1\equiv 0$ Player 2 ("predator"): $x^2=\Xi_T^2=0, \xi^2\equiv 0$

Explicit results:

- 1. Carlin, Lobo, Viswanathan ('07): risk-neutral ($\sigma = 0$), deterministic open loop
- 2. Schied & Zhang ('14): mean-variance optimization ($\sigma > 0$), deterministic open loop
- 3. Schöneborn & Schied ('07): extend Carlin et al. by allowing for longer time horizon $\tilde{T} > T$ for predator (two stage model), deterministic open loop

Player 1 ("distressed trader"):
$$x^1>0$$
, $\Xi_T^1=0, \xi^1\equiv 0$ Player 2 ("predator"): $x^2=\Xi_T^2=0, \xi^2\equiv 0$

Explicit results:

- 1. Carlin, Lobo, Viswanathan ('07): risk-neutral ($\sigma = 0$), deterministic open loop
- 2. Schied & Zhang ('14): mean-variance optimization ($\sigma > 0$), deterministic open loop
- 3. **Schöneborn & Schied ('07)**: extend Carlin et al. by allowing for longer time horizon $\tilde{T} > T$ for predator (two stage model), deterministic open loop

Numerical analysis:

4. **Carmona & Yang ('08)**: adopt optimization problem of Carlin et al., stochastic closed loop strategies, noise traders, also allow longer time horizon $\tilde{T} > T$ for predator (two stage model)

Qualitative property of Nash equilibrium: predatory trading vs. liquidity provision

Qualitative property of Nash equilibrium: predatory trading *vs.* liquidity provision

► Carlin et al.: preying **always** occurs

Qualitative property of Nash equilibrium:

predatory trading vs. liquidity provision

- ► Carlin et al.: preying **always** occurs
- Schöneborn & Schied, Carmona & Yang: Two-stage framework extending Carlin et al.
 - preying in plastic market $(\gamma \gg \lambda)$
 - liquidity provision in elastic market $(\lambda \gg \gamma)$

Qualitative property of Nash equilibrium:

predatory trading vs. liquidity provision

- Carlin et al.: preying always occurs
- Schöneborn & Schied, Carmona & Yang: Two-stage framework extending Carlin et al.
 - preying in plastic market $(\gamma \gg \lambda)$
 - ▶ liquidity provision in elastic market $(\lambda \gg \gamma)$
- Schied & Zhang: predatory trading or liquidity provision occurs

Two-Player Problem: Solution

Theorem

Under suitable assumptions there exists a unique open loop Nash equilibrium $(\hat{\alpha}^1, \hat{\alpha}^2)$ with **Player 1's** control $\hat{\alpha}^1$ given by

$$\hat{\alpha}_t^1 = c_t \cdot \left(\hat{\xi}_t^1 - w_t^5 \cdot \hat{X}_t^2 - \hat{X}_t^1\right)$$

with deterministic function $c_t>0$ satisfying $\lim_{t\uparrow \mathcal{T}}c_t=+\infty$ and

Two-Player Problem: Solution

Theorem

Under suitable assumptions there exists a unique open loop Nash equilibrium $(\hat{\alpha}^1, \hat{\alpha}^2)$ with **Player 1's** control $\hat{\alpha}^1$ given by

$$\hat{\alpha}_t^1 = c_t \cdot \left(\hat{\xi}_t^1 - w_t^5 \cdot \hat{X}_t^2 - \hat{X}_t^1 \right)$$

with deterministic function $c_t>0$ satisfying $\lim_{t\uparrow\mathcal{T}}c_t=+\infty$ and

$$\begin{split} \hat{\xi}_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \,|\, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \,|\, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \,ds \,\Big|\, \mathscr{F}_t\right] \\ &+ w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \,ds \,\Big|\, \mathscr{F}_t\right] \end{split}$$

with deterministic nonnegative weights $w_.^1 + w_.^2 + w_.^3 + w_.^4 = 1$, $w_.^5 \in [-1,1]$, $\lim_{t\uparrow T} w_t^{3,4,5} = 0$, $\lim_{t\uparrow T} w_t^{1,2} = 1/2$, and deterministic kernels K^1 , K^2 .

Two-Player Problem: Solution

Theorem (cont.)

And, similarly, with **Player 2's** control $\hat{\alpha}^2$ given by

$$\hat{\alpha}_t^2 = c_t \cdot \left(\hat{\xi}_t^2 - w_t^5 \cdot \hat{X}_t^1 - \hat{X}_t^2\right)$$

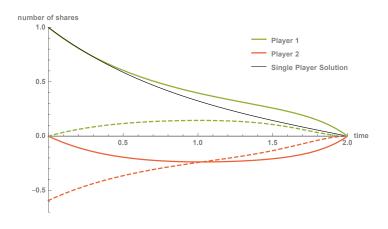
and

$$\begin{split} \xi_t^2 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \,|\, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^2 - \Xi_T^1 \,|\, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \,ds \,\Big|\, \mathscr{F}_t\right] \\ &+ w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^2 - \xi_s^1) \cdot K^2(t,s) \,ds \,\Big|\, \mathscr{F}_t\right]. \end{split}$$

Schied & Zhang ('17)

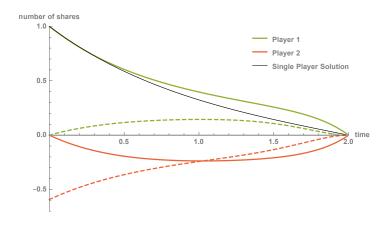
Player 1 ("distressed trader"): $x^1=1$, $\Xi_T^1=0$, $\xi_t^1\equiv 0$. Player 2 ("predator"): $x^2=0$, $\Xi_T^2=0$, $\xi_t^2\equiv 0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=2$.

Schied & Zhang ('17)



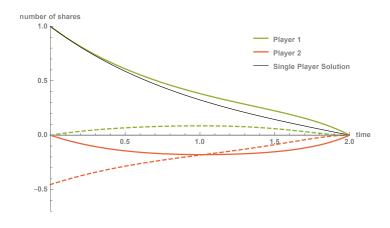
Player 1 ("distressed trader"): $x^1 = 1$, $\Xi_T^1 = 0$, $\xi_t^1 \equiv 0$. Player 2 ("predator"): $x^2 = 0$, $\Xi_T^2 = 0$, $\xi_t^2 \equiv 0$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.

Schied & Zhang ('17)



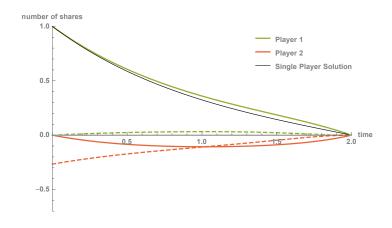
Player 1 ("distressed trader"): $x^1 = 1$, $\Xi_T^1 = 0$, $\xi_t^1 \equiv 0$. Player 2 ("predator"): $x^2 = 0$, $\Xi_T^2 = 0$, $\xi_t^2 \equiv 0$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.

Schied & Zhang ('17)



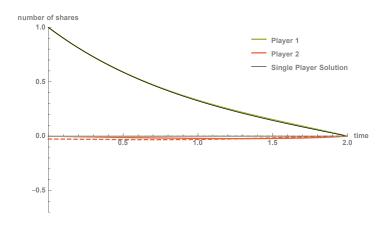
Player 1 ("distressed trader"): $x^1=1$, $\Xi_T^1=0$, $\xi_t^1\equiv0$. Player 2 ("predator"): $x^2=0$, $\Xi_T^2=0$, $\xi_t^2\equiv0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=1.5$.

Schied & Zhang ('17)



Player 1 ("distressed trader"): $x^1=1$, $\Xi_T^1=0$, $\xi_t^1\equiv 0$. Player 2 ("predator"): $x^2=0$, $\Xi_T^2=0$, $\xi_t^2\equiv 0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=1$.

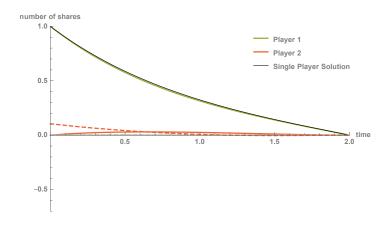
Schied & Zhang ('17)



Player 1 ("distressed trader"): $x^1=1$, $\Xi_T^1=0$, $\xi_t^1\equiv0$. Player 2 ("predator"): $x^2=0$, $\Xi_T^2=0$, $\xi_t^2\equiv0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.5$.

Optimal Portfolio Liquidation Revisited

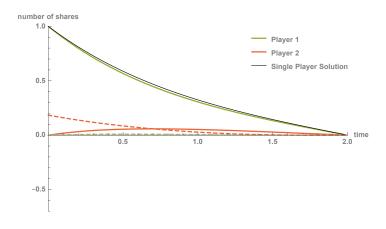
Schied & Zhang ('17)



Player 1 ("distressed trader"): $x^1 = 1$, $\Xi_T^1 = 0$, $\xi_t^1 \equiv 0$. Player 2 ("predator"): $x^2 = 0$, $\Xi_T^2 = 0$, $\xi_t^2 \equiv 0$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0.25$.

Optimal Portfolio Liquidation Revisited

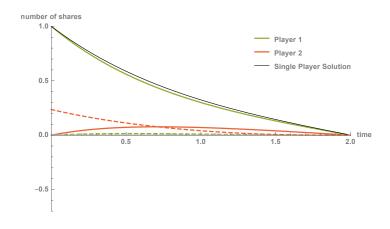
Schied & Zhang ('17)



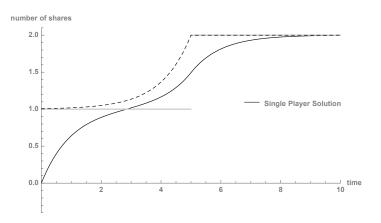
Player 1 ("distressed trader"): $x^1=1$, $\Xi_T^1=0$, $\xi_t^1\equiv0$. Player 2 ("predator"): $x^2=0$, $\Xi_T^2=0$, $\xi_t^2\equiv0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.1$.

Optimal Portfolio Liquidation Revisited

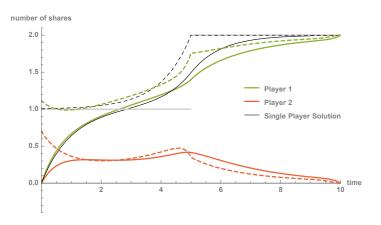
Schied & Zhang ('17)



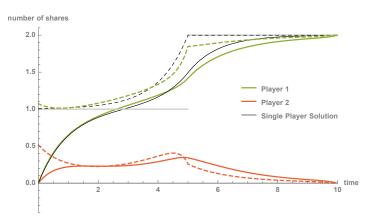
Player 1 ("distressed trader"): $x^1=1$, $\Xi_T^1=0$, $\xi_t^1\equiv 0$. Player 2 ("predator"): $x^2=0$, $\Xi_T^2=0$, $\xi_t^2\equiv 0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0$.



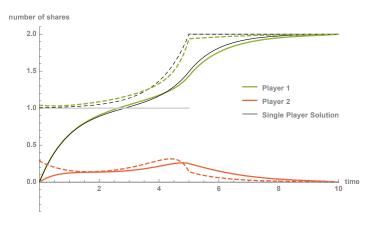
Player 1: $x^1 = 0$, $\xi_t^1 = 1 \cdot 1_{\{0 \le t < 5\}} + 2 \cdot 1_{\{5 \le t \le 10\}}$, $\Xi_T^1 = 2$. Player 2 ("predator"): $x^2 = 0$, $\xi_t^2 \equiv 0$, $\Xi_T^2 = 0$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.



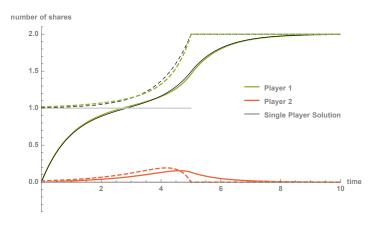
Player 1: $x^1 = 0$, $\xi_t^1 = 1 \cdot 1_{\{0 \le t < 5\}} + 2 \cdot 1_{\{5 \le t \le 10\}}$, $\Xi_T^1 = 2$. Player 2 ("predator"): $x^2 = 0$, $\xi_t^2 \equiv 0$, $\Xi_T^2 = 0$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.



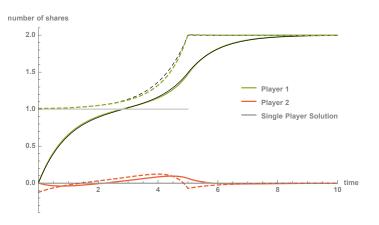
Player 1: $x^1=0$, $\xi^1_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi^1_T=2$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=1.5$.



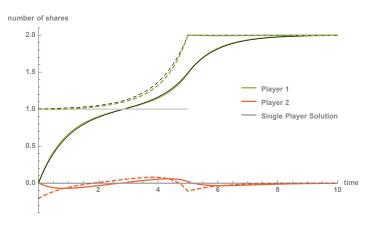
Player 1: $x^1 = 0$, $\xi^1_t = 1 \cdot 1_{\{0 \le t < 5\}} + 2 \cdot 1_{\{5 \le t \le 10\}}$, $\Xi^1_T = 2$. Player 2 ("predator"): $x^2 = 0$, $\xi^2_t \equiv 0$, $\Xi^2_T = 0$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 1$.



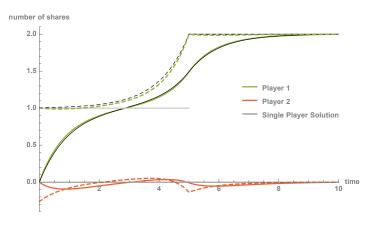
Player 1: $x^1=0$, $\xi^1_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi^1_T=2$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.5$.



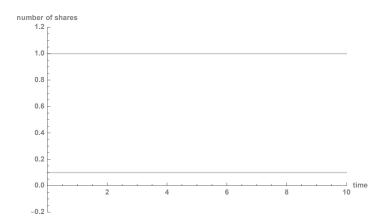
Player 1: $x^1=0$, $\xi^1_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi^1_T=2$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.25$.



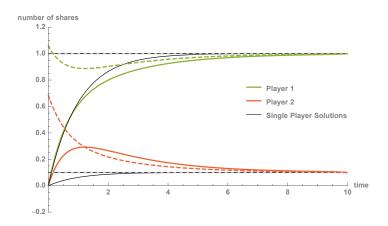
Player 1: $x^1=0$, $\xi^1_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi^1_T=2$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.1$.



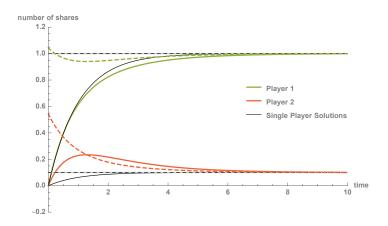
Player 1: $x^1=0$, $\xi^1_t=1\cdot 1_{\{0\leq t<5\}}+2\cdot 1_{\{5\leq t\leq 10\}}$, $\Xi^1_T=2$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0$.



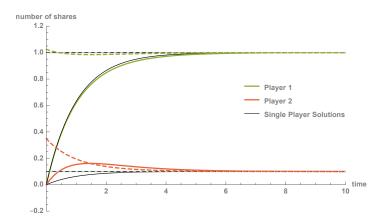
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.



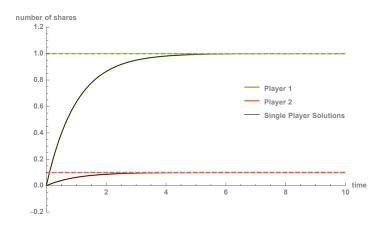
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.



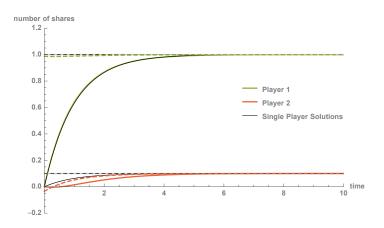
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 1.5$.



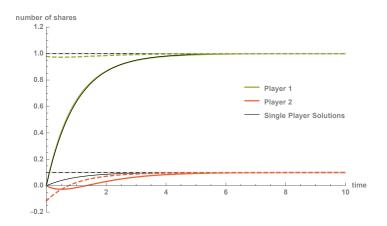
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 1$.



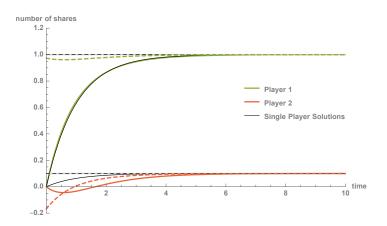
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0.5$.



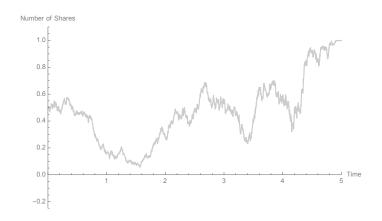
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0.25$.



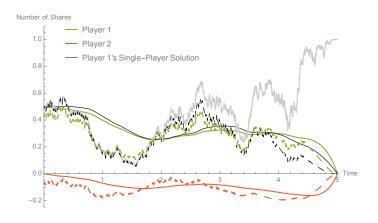
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0.1$.



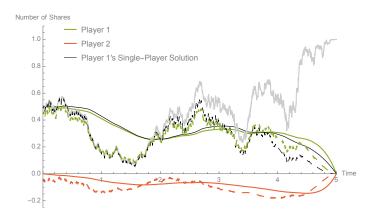
Player 1: $x^1 = 0$, $\xi_t^1 \equiv 1$, $\Xi_T^1 = 1$. Player 2: $x^2 = 0$, $\xi_t^2 \equiv 0.1$, $\Xi_T^2 = 0.1$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0$.



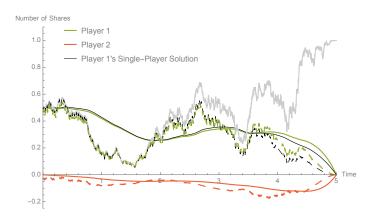
Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=2$.



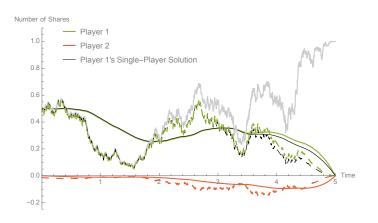
Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=2$.



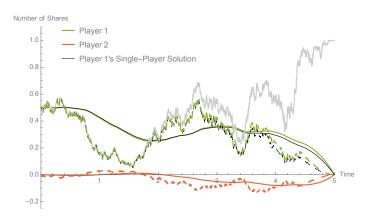
Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=1.5$.



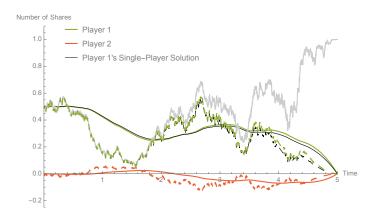
Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=1.0$.



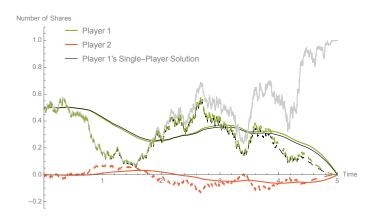
Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.5$.



Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.25$.

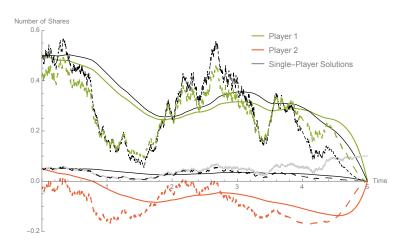


Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0.1$.



Player 1: $x^1=1/2$, $\xi^1_t=$ delta-hedge, $\Xi^1_T=0$. Player 2 ("predator"): $x^2=0$, $\xi^2_t\equiv 0$, $\Xi^2_T=0$. Parameters: $\sigma=1$, $\lambda=1$, $\gamma=0$.

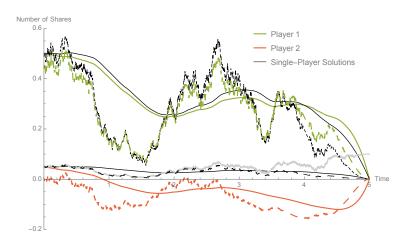
```
Player 1: x^1 = 1/2, \xi_t^1 = \text{delta-hedge}, \Xi_T^1 = 0. Player 2: x^2 = 1/20, \xi_t^2 = 0.1 \cdot \xi_t^1, \Xi_T^2 = 0. Parameters: \sigma = 1, \lambda = 1, \gamma = 2.
```



Player 1: $x^1 = 1/2$, $\xi_t^1 = \text{delta-hedge}$, $\Xi_T^1 = 0$.

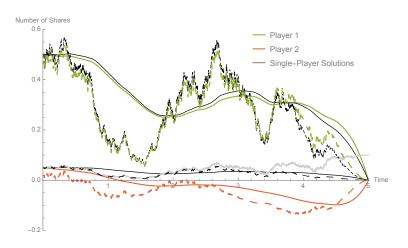
Player 2: $x^2 = 1/20$, $\xi_t^2 = 0.1 \cdot \xi_t^1$, $\Xi_T^2 = 0$.

Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.



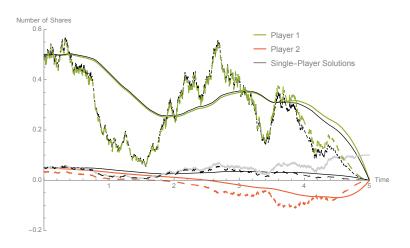
Player 1: $x^1 = 1/2$, $\xi_t^1 = \text{delta-hedge}$, $\Xi_T^1 = 0$. Player 2: $x^2 = 1/20$, $\xi_t^2 = 0.1 \cdot \xi_t^1$, $\Xi_T^2 = 0$.

Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 1.5$.



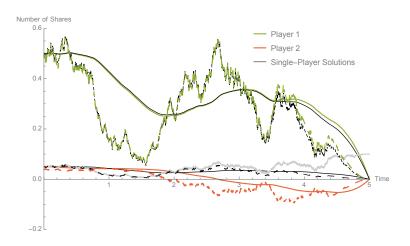
Player 1: $x^1 = 1/2$, $\xi_t^1 = \text{delta-hedge}$, $\Xi_T^1 = 0$. Player 2: $x^2 = 1/20$, $\xi_t^2 = 0.1 \cdot \xi_t^1$, $\Xi_T^2 = 0$.

Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 1.0$.



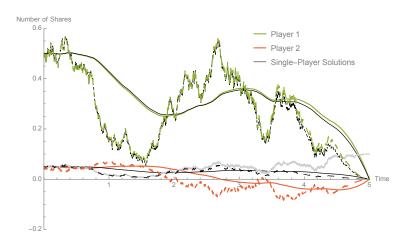
Player 1: $x^1 = 1/2$, $\xi_t^1 = \text{delta-hedge}$, $\Xi_T^1 = 0$. Player 2: $x^2 = 1/20$, $\xi_t^2 = 0.1 \cdot \xi_t^1$, $\Xi_T^2 = 0$.

Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0.5$.

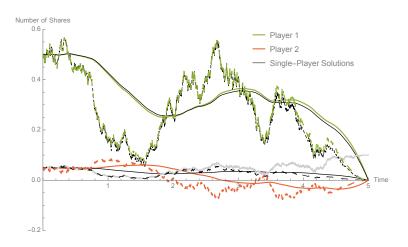


Player 1: $x^1 = 1/2$, $\xi_t^1 = \text{delta-hedge}$, $\Xi_T^1 = 0$. Player 2: $x^2 = 1/20$, $\xi_t^2 = 0.1 \cdot \xi_t^1$, $\Xi_T^2 = 0$.

Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0.25$.



Player 1: $x^1 = 1/2$, $\xi_t^1 = \text{delta-hedge}$, $\Xi_T^1 = 0$. Player 2: $x^2 = 1/20$, $\xi_t^2 = 0.1 \cdot \xi_t^1$, $\Xi_T^2 = 0$. Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0.1$.



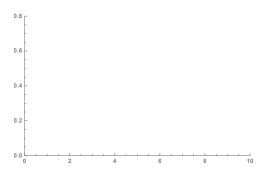
Player 1: $x^1 = 1/2$, $\xi_t^1 = \text{delta-hedge}$, $\Xi_T^1 = 0$. Player 2: $x^2 = 1/20$, $\xi_t^2 = 0.1 \cdot \xi_t^1$, $\Xi_T^2 = 0$.

Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 0$.

Illustration: Weights

Recall:

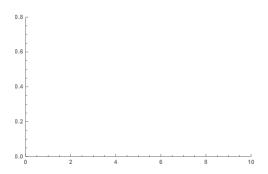
$$\begin{split} \hat{\xi}_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



Parameters: $\sigma = 1$, $\lambda = 1$, $\gamma = 2$.

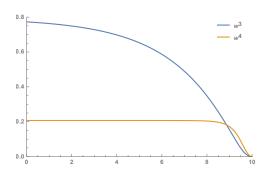
Recall:

$$\begin{split} \hat{\xi}_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



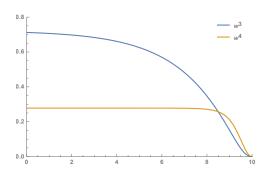
Recall:

$$\begin{split} \xi_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



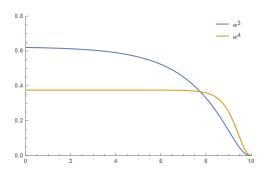
Recall:

$$\begin{split} \xi_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



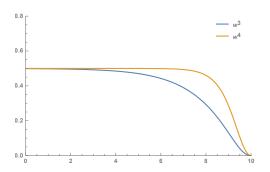
Recall:

$$\begin{split} \xi_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



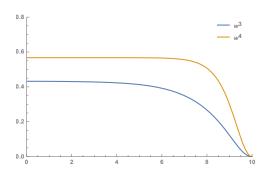
Recall:

$$\begin{split} \xi_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



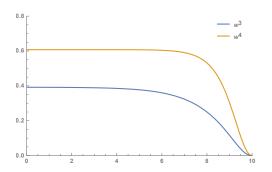
Recall:

$$\begin{split} \xi_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



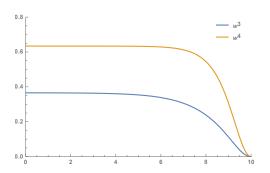
Recall:

$$\begin{split} \xi_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



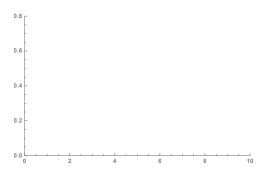
Recall:

$$\begin{split} \xi_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



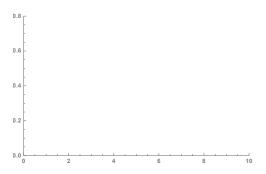
Recall:

$$\begin{split} \hat{\xi}_t^1 &= w_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + w_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



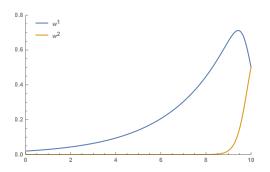
Recall:

$$\begin{split} \hat{\xi}_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



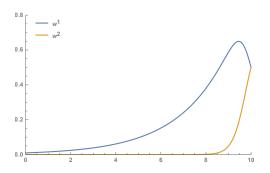
Recall:

$$\begin{split} \hat{\xi}_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



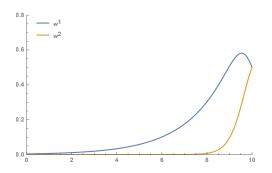
Recall:

$$\begin{split} \xi_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



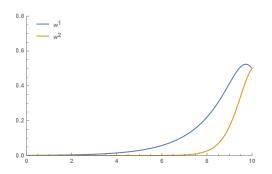
Recall:

$$\begin{split} \hat{\xi}_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



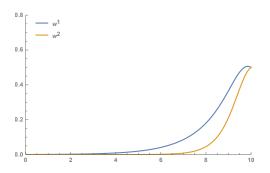
Recall:

$$\begin{split} \hat{\xi}_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



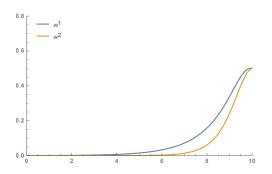
Recall:

$$\begin{split} \hat{\xi}_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



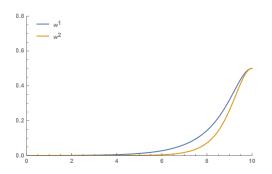
Recall:

$$\begin{split} \hat{\xi}_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



Recall:

$$\begin{split} \xi_t^1 &= \mathbf{w}_t^1 \cdot \mathbb{E}[\Xi_T^1 + \Xi_T^2 \, | \, \mathscr{F}_t] + \mathbf{w}_t^2 \cdot \mathbb{E}[\Xi_T^1 - \Xi_T^2 \, | \, \mathscr{F}_t] \\ &+ w_t^3 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 + \xi_s^2) \cdot K^1(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] + w_t^4 \cdot \mathbb{E}\left[\int_t^T (\xi_s^1 - \xi_s^2) \cdot K^2(t,s) \, ds \, \Big| \, \mathscr{F}_t\right] \end{split}$$



For fixed $\tilde{\alpha}^2 \in \mathscr{A}^2$, $\tilde{\alpha}^1 \in \mathscr{A}^1$ the mappings

$$\alpha^1 \mapsto J^1(\alpha^1, \tilde{\alpha}^2) \qquad \alpha^2 \mapsto J^2(\tilde{\alpha}^1, \alpha^2)$$

are strictly convex (over convex admissible sets \mathcal{A}^1 , \mathcal{A}^2).

For fixed $\tilde{\alpha}^2 \in \mathscr{A}^2$, $\tilde{\alpha}^1 \in \mathscr{A}^1$ the mappings

$$\alpha^1 \mapsto J^1(\alpha^1, \tilde{\alpha}^2) \qquad \alpha^2 \mapsto J^2(\tilde{\alpha}^1, \alpha^2)$$

are strictly convex (over convex admissible sets \mathcal{A}^1 , \mathcal{A}^2).

Lemma

There exists at most one Nash equilibrium.

Given two controls $\tilde{\alpha}^1 \in \mathscr{A}^1$, $\tilde{\alpha}^2 \in \mathscr{A}^2$ we can introduce the Gâteaux derivatives of the mappings:

$$\alpha^1 \mapsto J^1(\alpha^1, \tilde{\alpha}^2) \qquad \alpha^2 \mapsto J^2(\tilde{\alpha}^1, \alpha^2)$$

at $\alpha^1 \in \mathscr{A}^1$ and $\alpha^2 \in \mathscr{A}^2$, respectively, in any (suitable) directions $\beta^1, \beta^2 \in \mathscr{A}^0$:

$$\begin{split} &\langle \nabla_1 J^1(\alpha^1,\tilde{\alpha}^2),\beta^1\rangle \triangleq \lim_{\varepsilon \to 0} \frac{J^1(\alpha^1+\varepsilon\beta^1,\tilde{\alpha}^2)-J^1(\alpha^1,\tilde{\alpha}^2)}{\varepsilon},\\ &\langle \nabla_2 J^2(\tilde{\alpha}^1,\alpha^2),\beta^2\rangle \triangleq \lim_{\varepsilon \to 0} \frac{J^2(\tilde{\alpha}^1,\alpha^2+\varepsilon\beta^2)-J^2(\tilde{\alpha}^1,\alpha^2)}{\varepsilon}. \end{split}$$

Lemma

For $\alpha^1 \in \mathcal{A}^1$, $\alpha^2 \in \mathcal{A}^2$ we have

$$\langle \nabla_1 J^1(\alpha^1, \alpha^2), \beta^1 \rangle$$

$$= \mathbb{E} \left[\int_0^T \beta_s^1 \left(\lambda \alpha_s^1 + \frac{\lambda}{2} \alpha_s^2 + \gamma (X_s^2 - x^2) + \int_s^T (X_t^1 - \xi_t^1) \sigma dt \right) ds \right]$$

and

$$\begin{split} &\langle \nabla_2 J^2(\alpha^1,\alpha^2),\beta^2\rangle \\ &= \mathbb{E}\left[\int_0^T \beta_s^2 \left(\lambda \alpha_s^2 + \frac{\lambda}{2}\alpha_s^1 + \gamma(X_s^1 - x^1) + \int_s^T (X_t^2 - \xi_t^2)\sigma dt\right) ds\right] \\ &\text{for any } \beta^1,\beta^2 \in \mathscr{A}^0. \end{split}$$

20 / 24

Lemma

Suppose that (\hat{X}^1, \hat{X}^2) with controls $(\hat{\alpha}^1, \hat{\alpha}^2) \in \mathscr{A}^1 \times \mathscr{A}^2$ solves following coupled forward backward SDE system

$$\begin{cases} dX_t^1 = \alpha_t^1 dt, & X_0^1 = x^1, \\ dX_t^2 = \alpha_t^2 dt, & X_0^2 = x^2, \\ d\alpha_t^1 = \frac{\sigma}{\lambda} (X_t^1 - \xi_t^1) dt - \frac{\gamma}{\lambda} \alpha_t^2 dt - \frac{1}{2} d\alpha_t^2 + dM_t^1, & X_T^1 = \Xi_T^1, \\ d\alpha_t^2 = \frac{\sigma}{\lambda} (X_t^2 - \xi_t^2) dt - \frac{\gamma}{\lambda} \alpha_t^1 dt - \frac{1}{2} d\alpha_t^1 + dM_t^2, & X_T^2 = \Xi_T^2, \end{cases}$$

for two suitable square integrable martingales $(M_t^1)_{0 \le t < T}$ and $(M_t^2)_{0 \le t < T}$. Then $(\hat{\alpha}^1, \hat{\alpha}^2)$ is a Nash equilibrium.

Conclusion

- study competition of two strategic agents for liquidity in a financial market
- agents interact through common aggregated temporary and permanent price impact à la Almgren & Chriss
- resulting stochastic linear quadratic differential game with terminal state constraints allows for an explicitly available open loop Nash equilibrium
- closed-from solution reveals how the equilibrium strategies of the two players take into account the other agent's trading targets
- rich set of phenomena occurring in equilibrium: coexistence of cooperation and predation (depending on the ratio between temporary and permanent price impact)

Future Research

- opens door to study N-player stochastic differential game with mean field interaction through common price impact (Game with Major and Minor Players)
- study the Mean-Field limit $N \to +\infty$

Future Research

- opens door to study N-player stochastic differential game with mean field interaction through common price impact (Game with Major and Minor Players)
- study the Mean-Field limit $N \to +\infty$
- ▶ non-homogeneous agents: different inventory risk-aversion, different temporary price impact parameters λ^1 , λ^2
- different information structure (agents have private filtrations)

Future Research

- opens door to study N-player stochastic differential game with mean field interaction through common price impact (Game with Major and Minor Players)
- study the Mean-Field limit $N \to +\infty$
- ▶ non-homogeneous agents: different inventory risk-aversion, different temporary price impact parameters λ^1 , λ^2
- different information structure (agents have private filtrations)
- ▶ incorporate transient price impact à la Obizhaeva & Wang

Reference

Hedging with Temporary Price Impact with Peter Bank, H. Mete Soner

Mathematics and Financial Economics, 2017.

Reference

Hedging with Temporary Price Impact with Peter Bank, H. Mete Soner

Mathematics and Financial Economics, 2017.

Thank you very much!