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Single Player Problem
Bank, Soner, V. ('17)

For a given predictable £ € [?(P ® dt) and given x € R, o > 0,
A >0, v >0, find an absolutely continuous, adapted process
X = x+ [y ardt with o € L?(P © dt) which minimizes

T T T
IE[/ (tht)zadtJr)\/ a%dtJrv/ oz - (X — x) dt
0 0 0

subject to X7 = =1 for some given =1 € L?(Z1_,P).
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Single Player Problem: Solution

Theorem (Bank, Soner, V. ('17))

Under suitable assumptions the optimal control & with strategy
X = x+ [, &dt is given by

with deterministic function ¢; > 0 satisfying lim 7 ¢; = +o00 and

.
gt:v"vtl.E[zT%]erE-EU ¢& - K(t,s)ds
t

with deterministic nonnegative weights w! + w? = 1,
limg T vT/t1 =1, limyr v”vt2 = 0 and deterministic kernel K.
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Two-Player Problem
Player 1: X' = x + [J a}dt and targets ¢, =%
T
Jor )EE V (X! — &) ’odt
0

—|—>\/0Toz}-(a} )dt } — miln
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Two-Player Problem

Player 1: X' = x + [J a}dt and targets ¢, =%

satat e[ T(x& gy

+A atb- O/t—|—at>dt+’y/7—at (Xt—x)dt} — m|n

Player 2: X? = x* 4 [; ofdt and targets £2, =%

Fat o) 2 | /T<x3 gy

stXO =x! X1 _1

+A a?- at—l—at)dt—&—’y/Tat.(Xl_x>dt}—> mm

Two strategic agents are competing for liquidity!

s.t. X0 =x? X27:2



Nash equilibrium

A pair of admissible strategies (4!, 4?) is called a Nash

equilibrium for the game if for all admissible strategies o', o we

have
JHata2) < et a?) and  J3(a1, A7) < JA(ah, 0P),

that is, neither player has an incentive to deviate from (&', 42).
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equilibrium for the game if for all admissible strategies o', o we
have

JHata2) < et a?) and  J3(a1, A7) < JA(ah, 0P),

that is, neither player has an incentive to deviate from (&', 42).

Note: We will only consider an open loop Nash equilibrium!
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deterministic open loop

3. Schoneborn & Schied ('07): extend Carlin et al. by
allowing for longer time horizon T > T for predator (two
stage model), deterministic open loop

Numerical analysis:

4. Carmona & Yang ('08): adopt optimization problem of
Carlin et al., stochastic closed loop strategies, noise traders,
also allow longer time horizon T > T for predator (two stage
model)
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Nash equilibrium in optimal liquidation

Qualitative property of Nash equilibrium:

predatory trading vs. liquidity provision

» Carlin et al.: preying always occurs

» Schoneborn & Schied, Carmona & Yang: Two-stage
framework extending Carlin et al.

» preying in plastic market (7 > \)
» liquidity provision in elastic market (A > )

» Schied & Zhang: predatory trading or liquidity provision
occurs
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Two-Player Problem: Solution

Theorem

Under suitable assumptions there exists a unique open loop Nash
equilibrium (&', &%) with Player 1’s control &' given by

Al £l 5 2 v 1
O = G- (ft —w - X _Xt>

with deterministic function ¢; > 0 satisfying limy 7 ¢; = +00 and
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Two-Player Problem: Solution

Theorem

Under suitable assumptions there exists a unique open loop Nash
equilibrium (&', &%) with Player 1’s control &' given by

A1 21 5 ¢2 ¢l
O = G- (gt —w - X _Xt>
with deterministic function ¢; > 0 satisfying limy 7 ¢; = +00 and

& —wl B[} + 2% | £ + w2 EE} - 52| £

-

uf g | [ (@ +&) Kies)as| 7
t-T

w2 [ (€@-9) Ko os] 7]

with deterministic nonnegative weights wl+ w2 +wd+wt=1,
wd € [-1,1], limp7 wp™® =0, limy 7 w? = 1/2, and
deterministic kernels K, K?.
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Two-Player Problem: Solution

Theorem (cont.)
And, similarly, with Player 2’s control &° given by
a2 = (@ —wh . XE - )%2)
and
& =wi -E[E7 + 7| Fi] + wi - E[EF - =% | 74

+w- [/ (€2 +€2) - K(t, s)ds‘Jt]

Tl [/ (€2 —¢ly. Kz(ts)ds‘Jt].
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Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

Player 1 (“distressed trader”): x! =1, =% =0, ¢ =0.
Player 2 (“predator’): x> =0, =2 =0, £2 =0.
Parameters: c =1, A =1, v = 2.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares
1.0

— Player 1
= Player 2

— Single Player Solution

time

Player 1 (“distressed trader”): x =1, _T =0,¢& =0
Player 2 (“predator’): x> =0, =2 =0, &2 =
Parameters: c =1, A =1, v = 2.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares
1.0

— Player 1
= Player 2

— Single Player Solution

time

Player 1 (“distressed trader”): x =1, _T =0,¢& =0
Player 2 (“predator’): x> =0, =2 =0, &2 =
Parameters: c =1, A =1, v = 2.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares

1.0

0.5}

0.0

-0.5

Player 1 (“distressed trader”): x* =1, =L =0, ¢}

— Player 1
= Player 2

— Single Player Solution

‘‘‘‘‘

AAAAA

-
-
-
L~

Il
o

Player 2 (“predator’): x> =0, =2 =0, £2 =0.
Parameters: 0 =1, A=1, v =1.5.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares

1.0

0.5}

0.0 =

-0.5

Player 1 (“distressed trader”): x* =1, =L =0, ¢}

— Player 1
= Player 2

— Single Player Solution

Il
o

Player 2 (“predator’): x> =0, =2 =0, £2 =0.
Parameters: c =1, A=1, v=1.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares

1.0
— Player 1
= Player 2
— Single Player Solution

0.5

0.0 et I time

0.5 170 1.5 2.0
-0.5 -

Il
o

Player 1 (“distressed trader”): x* =1, =L =0, ¢}
Player 2 (“predator’): x> =0, =2 =0, £2 =0.
Parameters: 0 =1, A=1, v =0.5.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares

1.0

0.5}

0.0

-0.5

Player 1 (“distressed trader”): x* =1, =L =0, ¢}

— Player 1
= Player 2

— Single Player Solution

Il
o

Player 2 (“predator’): x> =0, =2 =0, £2 =0.
Parameters: 0 =1, A=1, v = 0.25.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares

1.0
— Player 1
= Player 2
— Single Player Solution
0.5
0 e e - | time
0.5 1.0 1.5 2.0
-0.5 -

Il
o

Player 1 (“distressed trader”): x* =1, =L =0, ¢}
Player 2 (“predator’): x> =0, =2 =0, £2 =0.
Parameters: 0 =1, A=1, v=0.1.

11/24



Optimal Portfolio Liquidation Revisited
Schied & Zhang ('17)

number of shares

1.0
— Player 1
= Player 2
— Single Player Solution
0.5
Y eyl =T =Ty ppnpenyemgemye | time
0.5 1.0 1.5 2.0
-0.5 -

Il
o

Player 1 (“distressed trader”): x* =1, =L =0, ¢}
Player 2 (“predator’): x> =0, =2 =0, £2 =0.
Parameters: c =1, A=1, v=0.

11/24



Stock-Buying Schedule

number of shares

20 e —_——

1.5+

P ) I - — Single Player Solution

0.5+

of—r 0 time
2 4 6 8 10

Player 1: X = 0 gt = 1 1{0<t<5} —|—2 1{5<t<10} :—,— = 2.
Player 2 (“predator’): x> =0, £&2 =0, =2 = 0.
Parameters: 0 =1, A =1, vy =2.

12/24



Stock-Buying Schedule

number of shares

2.0
15+
1.0 -\—\—_—_—_,u_,--f:f
05 >\

0.0 . . . 1 . . . 1

— Player 1
= Player 2

— Single Player Solution

~eo

————

Player 1: x! =0, ¢ = 1 1{0<t<5} +2- 1{5<t<10} =L =2

Player 2 (“predator”): x? =0, &2 =

Parameters: 0 =1, \ =

1, v=2.

12/24



Stock-Buying Schedule

number of shares

20 o

15}

— Player 1
~ = Player 2
1.0 S v

— Single Player Solution

05N

—"—

~
~
~~er

0.0 " " " L " " " L " " " L

Player 1: x! =0, ¢! = 1 1{0<t<5} +2- 1{5<t<10} =L =2
Player 2 (“predator’): x> =0, £&2 =0, =2 = 0.
Parameters: 0 =1, A=1, y=1.5.

12/24



Stock-Buying Schedule

number of shares

200 mmmmmm e
15+
— Player 1
_._-::Z:” — Player 2
10 fp=======% v
— Single Player Solution
0.5
S o
~a = D
~ e
0.0 L " " L " " " L " " L T ——— I time
2 4 6 8 10

Player 1: x! =0, {} =1 Ljo<resy + 2 Lis<i<iop, =7 = 2.
Player 2 (“predator’): x> =0, £&2 =0, =2 = 0.
Parameters: 0 =1, A =1, y=1.

12/24



Stock-Buying Schedule

number of shares

2.0
15+
— Player 1
cm====" = Player 2
1_0----!!=——‘ Yy
— Single Player Solution
0.5
0.0 [~= e | time
8

Player 1: x* =0, & = 1 1{0<t<5} +2- 1{5<t<10}v —T =2
Player 2 (“predator’): x> =0, £2 =0, =2 =
Parameters: 0 =1, A=1, v =0.5.

12/24



Stock-Buying Schedule

number of shares

2.0 /
15+
= Player 1
_____ = Player 2
10 pmmmm——=" v
— Single Player Solution
0.5
0.0 M q‘m e i time
0 == ———
L= 2 4 - 6 8 10

Player 1: x* =0, & = 1 1{0<t<5} +2- 1{5<t<10}v —T =2
Player 2 (“predator’): x> =0, £2 =0, =2 =
Parameters: 0 =1, A =1, v = 0.25.

12/24



Stock-Buying Schedule

number of shares

20+
15}
— Player 1
P L =2 — Player 2
— Single Player Solution
0.5}
0.0 L L = R L s i L L L L " | E— " . J time
b

Player 1: x* =0, & = 1 1{0<t<5} +2- 1{5<t<10}v —T =2
Player 2 (“predator’): x> =0, £2 =0, =2 =
Parameters: 0 =1, A=1, v =0.1L.

12/24



Stock-Buying Schedule

number of shares

2.0

15+
— Player 1

1.0 o _—===F%T — Player 2

. — Single Player Solution
0.5
0.0 L — I -——‘—L.'—_-‘P—VN\ L L L L L " L " ri— | time
S 4 So--0 6 8
f”

Player 1: x* =0, & = 1 1{0<t<5} +2- 1{5<t<10}v —T =2
Player 2 (“predator’): x> =0, £2 =0, =2 =
Parameters: 0 =1, A=1, v =0.

12/24



Constant Inventory Targets

number of shares
1.2 -

1.0 -
0.8
0.6 -
04

02

0.0 . . . 1 . . . 1 . . . 1 . . . 1 . . . I time
1

-0.2%-

Player 1: x! =0, ¢ =1, =L = 1.
Player 2: x> =0, £ =0.1, =2 =0.1.
Parameters: 0 =1, A =1, v = 2.

13 /24



Constant Inventory Targets

number of shares
1.2 -

O ——

0.8
— Player 1
0.6 )\ = Player 2

\ — Single Player Solutions

04 N

02

0.0 f . . 1 . . . 1 . . . 1 . . . 1 . . . I time
2 4 6 8 10

-0.2%-

Player 1: x! =0,
Player 2: x> =0
Parameters: 0 =

13/24



Constant Inventory Targets

number of shares
1.2 -

L3 ———

——————————

0.8 -
— Player 1

06 — Player 2

— Single Player Solutions

041

02

<
-~
~<o=

0.0 f . . 1 . . . 1 . . . 1 . . . 1 . . . I time
1

-0.2%-

Player 1: x! =0,
Player 2: x> =0
Parameters: 0 =

13/24



Constant Inventory Targets

number of shares
1.2 -

1.0 Emmws oo oo

0.8 -
— Player 1

06 — Player 2

— Single Player Solutions

04

02/ S~

0.0 f . . 1 . . . 1 . . . 1 . . . 1 . . . I time
1

-0.2%-

Player 1: x =
Player 2: x°
Parameters: 0 =

13/24



Constant Inventory Targets

number of shares
1.2 -

“w—_—— P —..ooo.o .

0.8 -
— Player 1

06 — Player 2

— Single Player Solutions

04

02

0.0 f . . 1 . . . 1 . . . 1 . . . 1 . . . I time
1

-0.2%-

Player 1: x! =0,
Player 2: x> =0
Parameters: 0 =

13 /24



Constant Inventory Targets

number of shares

12
10 o= mmme e — e o e e e e e
0.8
— Player 1
06 = Player 2
— Single Player Solutions
04
02
0.0 e I . . . I . . . I . . . 1 . . . I time
r 2 4 6 8 10
-0.2%-

Player 1: x! =0, ¢ =1, =L =1
Player 2: x> =0, 2 =0.1, =2 =0.1
Parameters: 0 =1, A =1, v=0.25

13/24



Constant Inventory Targets

number of shares

12+
10 o o o o o o o o o o o T e e e o e o o s o
0.8
— Player 1
06 — Player 2
— Single Player Solutions
04
0.2
0.0 f —"% L time
g 2 4 6 8 10
r
-0.24-

Player 1: x! =0, ¢ =1, =% =
Player 2: x> =0, (2 =0.1, =% =
Parameters: 0 =1, A =1

13/24



Constant Inventory Targets

number of shares
1.2 -

W —

0.8
— Player 1
061 = Player 2

— Single Player Solutions

04

02

0.0 e /\/‘T"_’\" L L time
1

-0.2%

Player 1: x! =0,
Player 2: x> =0
Parameters: 0 =

13/24



Running after the delta
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Lemma

There exists at most one Nash equilibrium.
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Sketch of Proof

Given two controls @' € 71, @2 € <72 we can introduce the
Gateaux derivatives of the mappings:
al Jl(al,&z) a® e J2(o"41,042)

at ol € &1 and o? € &2, respectively, in any (suitable) directions

B, 3% € o
. Mot +epta?) — JHat, a?)
101 ~2\ ply A ) )
<V1J (ava)7/8>_€|ino - )
J2(at, a? + eB?) — S2(at, a?)
2(x1 2\ a2\ A | ) )
(VoJ (a,a),ﬁ)—gllno - .
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Sketch of Proof

Lemma
For o' € &/t a2 € o/ we have

<V1Jl(a1,a2),ﬁl>
4 A T
=1 [/0 Bs <Aai + 505+ (X = x7) +/S (X! — g.})adt> ds}
and
<V2J2(a1, a2)752>
4 A T
=1 [/0 B2 <Aa§ +5as +y(Xs = x7) +/S (X2 — gf)adt> ds}

for any B*, 3% € o/°.
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Sketch of Proof

Lemma

Suppose that (X', X?) with controls (a*,42) € &' x 72 solves

following coupled forward backward SDE system

dX} = ajdt,  X§ = x
dX? = a?dt, X% =x?

o 1
dal = X( —&Hdt — Xoﬂdt — 5d 2+ dM},
o 1
da%:X( ft)dt—xa}dtfid L dm?,

for two suitable square integrable martingales (M} )o<:-1 and
(M2)o<t<T. Then (&*,42) is a Nash equilibrium.
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Conclusion

study competition of two strategic agents for liquidity in a
financial market

agents interact through common aggregated temporary and
permanent price impact a la Almgren & Chriss

resulting stochastic linear quadratic differential game with
terminal state constraints allows for an explicitly available
open loop Nash equilibrium

closed-from solution reveals how the equilibrium strategies of
the two players take into account the other agent's trading
targets

rich set of phenomena occurring in equilibrium: coexistence of

cooperation and predation (depending on the ratio between
temporary and permanent price impact)



Future Research

» opens door to study N-player stochastic differential game with
mean field interaction through common price impact (Game
with Major and Minor Players)

» study the Mean-Field limit N — +oc
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» opens door to study N-player stochastic differential game with
mean field interaction through common price impact (Game
with Major and Minor Players)

» study the Mean-Field limit N — +oc

» non-homogeneous agents: different inventory risk-aversion,
different temporary price impact parameters \!, \?

» different information structure (agents have private filtrations)

> incorporate transient price impact a la Obizhaeva & Wang
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