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Continuous-time Markov chains with exponentially small transition rates
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• Consider jump processes with dynamics described by generator matrices L.

� The transition rate from state i to state j (for i 6= j):

Lij ⇣ exp (�Uij/"), or lim
"!0

" lnLij = �Uij

� The escape rates from state i: �Lii =
P

j 6=i Lij

• Such a Markov chain can be represented, up to exponential order, by a weighted directed
graph G(S,A,U).

• Assume all Markov chains under consideration have finite states and are irreducible.

• Do not assume reversibility, i.e. the process is not required to satisfy the detailed balance
equation ⇡iLij = ⇡jLji, where ⇡ is the invariant distribution.
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The problem: spectral decomposition of the generator L
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• Goal: Estimate the eigenvalues and eigenvectors of the generator L.

• Main story: How such a problem can be translated into optimization problems over
graphs, how we solve it e�ciently, and what are the associated physical interpretations.
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Theoretical backgrounds

�6

T-graphs (risk seminar 20181016)

Tingyue Gan
⇤

October 8, 2018

Markov chain approximation in the Freidlin-Wentzell regime

Freidlin and Wentzell developed the Large Deviation Theory in their study of random perturbations

of dynamical systems. They showed that the long-term behavior of a di↵usion processes Xt generated

by the SDE

dXt = b(Xt)dt+
p
2"dWt

can be e↵ectively modeled by a Markov chain whose states correspond to the stable attractors of

ẋt = b(xt).
To estimate the exponential factor Uij , they described the large deviations of Xt from the

deterministic trajectory ẋt = b(xt) by introducing the action functional

IT (�) =
1

2

Z T

0
k�̇(t)� b(�(t))k2dt

defined on the space of absolute continuous paths �, and the quasi-potential

Uij = inf{IT (�) | �(0) 2 Ki, �(T ) 2 Kj , T > 0}

which characterizes the di�culty of the passage from attractor i to attractor j. Here Ki and Kj are

two compact sets corresponding to the two distinct attractors.
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Long-term dynamics and spectral decomposition
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The long-term dynamics of such a Markov chain is largely governed by the spectral properties of the generator.

• �0 = 0 is a simple eigenvalue, the corresponding right eigenvector is '0 = 1 (every entry equals to 1),

and the left eigenvector is  0 = ⇡ (the invariant distribution).

• Let �1,�2, · · · ,�n�1 be the nonzero eigenvalues of �L s.t. |�1|  |�2|  · · ·  |�n�1|, then Re(�k) > 0,

and they are exponentially small.

• In the case that all �k’s are real and distinct, one can write the probability distribution p(t), governed
by the Fokker-Planck equation dpT /dt = pTL, in the following form

p(t) = ⇡ +

n�1X

k=1

e��ktp(0)T'k k.

Let t(") be a timescale satisfying lim
"!0

" ln��1
k̂

< lim
"!0

" ln t(") < lim
"!0

" ln��1
k̂�1

, for some k̂ between 2 and

n� 1, then

lim
"!0

�kt(") =

(
0, 1  k  k̂ � 1,

1, k̂  k  n� 1.
Hence, lim

"!0
p(t(")) = lim

"!0

0

@⇡ +

k̂�1X

k=1

(p(0)T�k) k

1

A .

That is to say, the kth eigen-component of the probability distribution p(t) will not be significant after

the timescale surpasses ��1
k .
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The essence of the main results

�9

T-graphs (risk seminar 20181016)

Tingyue Gan
⇤

October 14, 2018

• There is a sequence of exponentially increasing characteristic timescales which are associated

with two types of events: exits and rotations.

• Exits from metastable* classes occur on timescales that are asymptotically equivalent to the

inverses of eigenvalues. Asymptotic estimates of eigenvalues can be expressed in terms of

optimal W-graphs (Wentzell).

• Rotations within metastable classes can be described by Freidlin’s cycles. Through propagating

weights on vertices, we can estimate quasi-invariant distributions on metastable classes, which

can then be used to construct asymptotic eigenvectors.

• Optimal W-graphs and Freidlin’s cycles can be unified under the hierarchy of typical transitions

graphs, which we can construct in a single sweep.

*In physics, metastability is a stable state of a dynamical system other than the system’s state of least energy. The

system will spontaneously leave any other state of higher energy to eventually reach (after a sequence of transitions)

the least energetic state.
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A simple example to demonstrate the main results
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0 = �0 < �1 < �2 are eigenvalues of �L.

t = 0

t ⇣ e1/"

Exit: 1 ! 2
Rate: L12 ⇣ e�1/" ⇣ �2
Right: '2 ⇣ [1, 0, 0]T

Left:  2 ⇣ [1,�1, 0]T

t ⇣ e2/"

Rotation: 1 $ 2
Rate: e�2/"

⇡1,2 ⇣ [e�1/", 1]T

t ⇣ e3/"

Exit: {1, 2} ! 3
Rate: ⇡1,2(1)L13 ⇣ e�3/" ⇣ �1
Right: '1 ⇣ [1, 1, 0]T

Left:  1 ⇣ [e�1/", 1,�1]T

t ⇣ e5/"

Rotation: {1 $ 2} $ 3
Rate: e�5/"

⇡1,2,3 ⇣ [e�3/", e�2/", 1]T
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Wentzell’s result on asymptotic estimates of eigenvalues
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In 1972, Wentzell established the following asymptotic estimates of the real parts of eigenvalues in

terms of optimal W-graphs.

Theorem 1. (Wentzell, 1972) Let 0,��1,��2, · · · ,��n�1 be the eigenvalues of a generator matrix
L with o↵-diagonal entries Lij ⇣ exp(�Uij/"), indexed so that 0 < |�1|  |�2|  · · ·  |�n�1|. Then
as " ! 0,

Re(�k) ⇣ exp(��k/"),

where �k =
P

(i!j)2g⇤k
Uij �

P
(i!j)2g⇤k+1

Uij

• g⇤k is an optimal W-graph with k sinks, which is a minimum spanning forest of G with k
in-trees. In each in-tree, there is a unique directed path from any vertex to the root (sink),

Hence, each non-sink vertex emits exactly one arrow and there are no cycles.

• Reversibility is not required in Wentzell’s result.

Theorem 1 implies that �1 � �2 � · · · � �n�1.

Assumption: All optimal W-graphs g⇤k are unique (nondegenerate).

Under the above Assumption, �k’s are strictly decreasing, i.e., �1 > �2 > · · · > �n�1. Hence,

for " su�ciently small, all �k’s are real and distinct. In addition, if pre-factors of transition rates

are known, then refined estimates of eigenvalues can be obtained.

Theorem 2. Assume all optimal W-graphs are unique. Let 0 > ��1 > ��2 > · · · > ��n�1 be the
eigenvalues of a generator matrix L with o↵-diagonal entries Lij = ij exp(�Uij/")(1 + o(1)). Then

�k = ↵k exp(��k/") (1 + o(1)) ,

where �k =
P

(i!j)2g⇤k
Uij �

P
(i!j)2g⇤k+1

Uij , and ↵k =

Q
(i!j)2g⇤

k
ij

Q
(i!j)2g⇤

k+1
ij

.

The key to proving Theorem 2 lies in identifying the connection between the coe�cients of the

characteristic polynomial of L and the sets of W-graphs with the corresponding number of sinks.
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A simple example to demonstrate Wentzell's result
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Refined asymptotic estimates of eigenvalues
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Assumption: All optimal W-graphs g⇤k are unique (nondegenerate).

Under the above Assumption, �k’s are strictly decreasing, i.e., �1 > �2 > · · · > �n�1. Hence,

for " su�ciently small, all �k’s are real and distinct. In addition, if pre-factors of transition rates

are known, then refined estimates of eigenvalues can be obtained.
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The key to proving Theorem 2 lies in identifying the connection between the coe�cients of the

characteristic polynomial of L and the sets of W-graphs with the corresponding number of sinks.

Theorem 3. Assume all optimal W-graphs are unique. The collection of optimal W-graphs {g⇤k}nk=1
is a hierarchy satisfying the following properties:

⇤tgan@berkeley.edu
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How to construct optimal W-graphs?
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T-graphs (risk seminar 20181016)

Tingyue Gan
⇤

October 11, 2018

• Prove a weak nested property of optimal graphs.

• Borrow the ideas of contraction and expansion of cycles from Chu-Liu/Edmonds’ algorithm

for finding optimal branching (the directed analog of the minimum spanning tree problem).

Chu-Liu/Edmonds’ algorithm can be used to find the optimal W-graph with one sink. However,

we want the full hierarchy of optimal W-graphs, in other words, we need to solve a sequence of

combinatoric optimization problems. The beauty here is that when the ideas of contraction and

expansion fuse with the weak nested property, constructing the hierarchy of optimal W-graphs can

be done in a single sweep, from bottom up.

• The algorithm is conceptually recursive. (However, it can be implemented more e�ciently in a

non-recursive fashion.)

– Every time a cycle is encountered during the construction, it gets contracted into a

super-vertex, resulting in a coarser Markov chain represented by a smaller graph.

– The optimal W-graphs of the smaller graph can then be expanded recursively to obtain

the optimal W-graphs of the original graph G.

⇤tgan@berkeley.edu

1



Weak nested property of optimal W-graphs
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s+ks+k

s�k
s�k

S�
k

S�
k

S+
kS+

k

pk pk

qk
qk

g⇤k+1 g⇤k

Theorem 3. Assume all optimal W-graphs are unique. The collection of optimal W-graphs {g⇤k}nk=1
is a hierarchy satisfying the following properties:

(i) There is a unique component S+
k of g⇤k+1 whose sink s+k is not a sink of g⇤k.

(ii) All the arrows of g⇤k with tails not in S+
k are inherited from g⇤k+1, however, arrows with tails

in S+
k can be di↵erent.

(iii) In g⇤k, there is a single arrow (pk ! qk) with tail pk in S+
k of g⇤k+1 and head qk in another

component S�
k of g⇤k+1.

The main technique involved in proving Theorem 3 is the swapping of subsets of arrows.

2



A simple example to demonstrate the algorithm
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3 2

1

12

4

5 2

G

Contract cycle

[0]

[0] [0]

3 2

1

12

4

5 2

[1]

[0] [0]

3 2

1

12

4

5 2

[0]

[0] [0]

g⇤2
�2 = 1

3

1,2

4

5

3

[0]

[0]

g⇤(1)1

�1 = 3

3 2

1

12

4

5 2

[1]

[0] [0]

g⇤1
�1 = 3

Expand cycle and cut 
a particular arrow3

1,2

4

5

3

[0]

[0]

G(1)

Theorem 3. Assume all optimal W-graphs are unique. The collection of optimal W-graphs {g⇤k}nk=1
is a hierarchy satisfying the following properties:

(i) There is a unique component S+
k of g⇤k+1 whose sink s+k is not a sink of g⇤k.

(ii) All the arrows of g⇤k with tails not in S+
k are inherited from g⇤k+1, however, arrows with tails

in S+
k can be di↵erent.

(iii) In g⇤k, there is a single arrow (pk ! qk) with tail pk in S+
k of g⇤k+1 and head qk in another

component S�
k of g⇤k+1.

The main technique involved in proving Theorem 3 is the swapping of subsets of arrows.

• U1
{1,2},3 = v1 + U13 = (max{1$2} U � U12) + U13 = (2� 1) + 2 = 3

Exit from {1 $ 2} via 1 ! 3 with rate e�U1
{1,2},3/" ⇣ ⇡1,2(1)L13

• U2
{1,2},3 = v2 + U23 = (max{1$2} U � U21) + U23 = (2� 2) + 4 = 4

Exit from {1 $ 2} via 2 ! 3 with rate e�U2
{1,2},3/" ⇣ ⇡1,2(2)L23

L{1$2} ⇣

�e�U12/" e�U12/"

e�U21/" �e�U21/"

�

⇡1,2 ⇣
"

eU12/"

eU12/"+eU21/"
,

eU21/"

eU12/"+eU21/"

#T

⇣
h
e�(max{1$2} U�U12)/", e�(max{1$2} U�U21)/"

iT

⇣
h
e�v1/", e�v2/"

iT

2
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Theorem 3. Assume all optimal W-graphs are unique. The collection of optimal W-graphs {g⇤k}nk=1
is a hierarchy satisfying the following properties:

(i) There is a unique component S+
k of g⇤k+1 whose sink s+k is not a sink of g⇤k.

(ii) All the arrows of g⇤k with tails not in S+
k are inherited from g⇤k+1, however, arrows with tails

in S+
k can be di↵erent.

(iii) In g⇤k, there is a single arrow (pk ! qk) with tail pk in S+
k of g⇤k+1 and head qk in another

component S�
k of g⇤k+1.

The main technique involved in proving Theorem 3 is the swapping of subsets of arrows.

• U1
{1,2},3 = v1 + U13 = (max{1$2} U � U12) + U13 = (2� 1) + 2 = 3

Exit from {1 $ 2} via 1 ! 3 with rate e�U1
{1,2},3/" ⇣ ⇡1,2(1)L13

• U2
{1,2},3 = v2 + U23 = (max{1$2} U � U21) + U23 = (2� 2) + 4 = 4

Exit from {1 $ 2} via 2 ! 3 with rate e�U2
{1,2},3/" ⇣ ⇡1,2(2)L23

L{1$2} ⇣

�e�U12/" e�U12/"

e�U21/" �e�U21/"

�

⇡1,2 ⇣
"

eU12/"

eU12/" + eU21/"
,

eU21/"

eU12/" + eU21/"

#T

⇣
h
e�(max{1$2} U�U12)/", e�(max{1$2} U�U21)/"

iT

⇣
h
e�v1/", e�v2/"

iT

2

Quasi-invariant distribution on the cycle {1, 2}
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What if we preserve all arrows in expansions?

�21

– Every time a cycle is encountered during the construction, it gets contracted into a
super-vertex, resulting in a coarser Markov chain represented by a smaller graph.

– The optimal W-graphs of the smaller graph can then be expanded recursively to obtain
the optimal W-graphs of the original graph G.

• The result is a (strongly nested) hierarchy of graphs consisting of typical transitions (exponen-
tially dominating) for each characteristic timescale.

• The closed communicating classes (recurrent) in each typical transitions graph are the
metastable classes for the corresponding timescale.

• Weights on the vertices can be used to construct quasi-invariant distributions on the metastable
classes.

• The cycles encountered during the constructions coincide with Friedlin’s cycles. Freidlin’s
cycles are constructed rank by rank, with cycles of the same rank partitioning the state-space,
while they do not necessarily respect the order of timescales.

2



Typical transitions graphs
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Tingyue Gan
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L ⇣

2

4
�(e�1/" + e�2/") e�1/" e�2/"

e�2/" �(e�2/" + e�4/") e�4/"

e�5/" 0 �e�5/"

3

5

0 = �0 < �1 < �2 are eigenvalues of �L.

t = 0

t ⇣ e1/"

Exit: 1 ! 2
Rate: L12 ⇣ e�1/" ⇣ �2
Right: '2 ⇣ [1, 0, 0]T

Left:  2 ⇣ [1,�1, 0]T

t ⇣ e2/"

Rotation: 1 $ 2
Rate: e�2/"

⇡1,2 ⇣ [e�1/", 1]T

t ⇣ e3/"

Exit: {1, 2} ! 3
Rate: ⇡1,2(1)L13 ⇣ e�3/" ⇣ �1
Right: '1 ⇣ [1, 1, 0]T

Left:  1 ⇣ [e�1/", 1,�1]T

t ⇣ e5/"

Rotation: {1 $ 2} $ 3
Rate: e�5/"

⇡1,2,3 ⇣ [e�3/", e�2/", 1]T

⇤tgan@berkeley.edu
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Theorem 3. Assume all optimal W-graphs are unique. The collection of optimal W-graphs {g⇤k}nk=1
is a hierarchy satisfying the following properties:

(i) There is a unique component S+
k of g⇤k+1 whose sink s+k is not a sink of g⇤k.

(ii) All the arrows of g⇤k with tails not in S+
k are inherited from g⇤k+1, however, arrows with tails

in S+
k can be di↵erent.

(iii) In g⇤k, there is a single arrow (pk ! qk) with tail pk in S+
k of g⇤k+1 and head qk in another

component S�
k of g⇤k+1.

The main technique involved in proving Theorem 3 is the swapping of subsets of arrows.

• U1
{1,2},3 = v1 + U13 = (max{1$2} U � U12) + U13 = (2� 1) + 2 = 3

Exit from {1 $ 2} via 1 ! 3 with rate e�U1
{1,2},3/" ⇣ ⇡1,2(1)L13

• U2
{1,2},3 = v2 + U23 = (max{1$2} U � U21) + U23 = (2� 2) + 4 = 4

Exit from {1 $ 2} via 2 ! 3 with rate e�U2
{1,2},3/" ⇣ ⇡1,2(2)L23

L{1$2} ⇣

�e�U12/" e�U12/"

e�U21/" �e�U21/"

�

⇡1,2 ⇣
"

eU12/"

eU12/" + eU21/"
,

eU21/"

eU12/" + eU21/"

#T

⇣
h
e�(max{1$2} U�U12)/", e�(max{1$2} U�U21)/"

iT

⇣
h
e�v1/", e�v2/"

iT

t(1) ⇣ e3/"

t(1) ⇣ e5/"
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Result on asymptotic estimates of eigenvectors
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Theorem 3. Assume all optimal W-graphs are unique. The collection of optimal W-graphs {g⇤k}nk=1
is a hierarchy satisfying the following properties:

(i) There is a unique component S+
k of g⇤k+1 whose sink s+k is not a sink of g⇤k.

(ii) All the arrows of g⇤k with tails not in S+
k are inherited from g⇤k+1, however, arrows with tails

in S+
k can be di↵erent.

(iii) In g⇤k, there is a single arrow (pk ! qk) with tail pk in S+
k of g⇤k+1 and head qk in another

component S�
k of g⇤k+1.

The main technique involved in proving Theorem 3 is the swapping of subsets of arrows.

Theorem 4. Assume all optimal W-graphs are unique. In the typical transitions graph corresponding
to the characteristic timescale just prior to ��1

k , identify the two metastable classes C+
k ⇢ S+

k and
C�
k ⇢ S�

k , such that the component S+
k collapses into S�

k on the timescale ��1
k . Let µC+

k
and µC�

k

be the quasi-invariant distributions, respectively. Define  ̃k and '̃k as follows (k = 1, · · · , n� 1):

'̃k(i) =

(
1, i 2 S+

k ,

0, i 2 S \ S+
k ,

 ̃k(i) =

8
>><

>>:

µC+
k
(i) ⇣ e�vi/", i 2 C+

k ,

�µC�
k
(i) ⇣ �e�vi/", i 2 C�

k ,

0, i 2 S \ (C+
k [ C�

k ).

Then

(i)  ̃T
k '̃k0 = 1{k=k0} + o(1);

(ii) (a)  ̃T
k L'̃k = ��k (1 + o(1));

(b) If k > k0, then lim
"!0

" ln(| ̃T
k L'̃k0 |) < ��k;

(c) If k < k0, then lim
"!0

" ln(| ̃T
k L'̃k0 |)  ��k0.

The proof of Theorem 4 makes use of the weak nested property of optimal W-graphs.

S+
2 = {1}, C+

2 = {1}
S�
2 = {2}, C�

2 = {2}

Exit: 1 ! 2

�2 ⇣ e�1/"

Right: '2 ⇣ [1, 0, 0]T

Left:  2 ⇣ [1,�1, 0]T

S+
1 = {1, 2}, C+

1 = {1, 2}
S�
1 = {3}, C�

1 = {3}

2



A simple example to demonstrate the asymptotic eigenvectors
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L ⇣

2

4
�(e�1/" + e�2/") e�1/" e�2/"

e�2/" �(e�2/" + e�4/") e�4/"

e�5/" 0 �e�5/"

3

5

0 = �0 < �1 < �2 are eigenvalues of �L.

t = 0

t ⇣ e1/"

Exit: 1 ! 2
Rate: L12 ⇣ e�1/" ⇣ �2
Right: '2 ⇣ [1, 0, 0]T

Left:  2 ⇣ [1,�1, 0]T

t ⇣ e2/"

Rotation: 1 $ 2
Rate: e�2/"

⇡1,2 ⇣ [e�1/", 1]T

t ⇣ e3/"

Exit: {1, 2} ! 3
Rate: ⇡1,2(1)L13 ⇣ e�3/" ⇣ �1
Right: '1 ⇣ [1, 1, 0]T

Left:  1 ⇣ [e�1/", 1,�1]T

t ⇣ e5/"

Rotation: {1 $ 2} $ 3
Rate: e�5/"

⇡1,2,3 ⇣ [e�3/", e�2/", 1]T
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Theorem 3. Assume all optimal W-graphs are unique. The collection of optimal W-graphs {g⇤k}nk=1
is a hierarchy satisfying the following properties:

(i) There is a unique component S+
k of g⇤k+1 whose sink s+k is not a sink of g⇤k.

(ii) All the arrows of g⇤k with tails not in S+
k are inherited from g⇤k+1, however, arrows with tails

in S+
k can be di↵erent.

(iii) In g⇤k, there is a single arrow (pk ! qk) with tail pk in S+
k of g⇤k+1 and head qk in another

component S�
k of g⇤k+1.

The main technique involved in proving Theorem 3 is the swapping of subsets of arrows.

Theorem 4. Assume all optimal W-graphs are unique. In the typical transitions graph corresponding
to the characteristic timescale just prior to ��1

k , identify the two metastable classes C+
k ⇢ S+

k and
C�
k ⇢ S�

k , such that the component S+
k collapses into S�

k on the timescale ��1
k . Let µC+

k
and µC�

k

be the quasi-invariant distributions, respectively. Define  ̃k and '̃k as follows (k = 1, · · · , n� 1):

'̃k(i) =

(
1, i 2 S+

k ,

0, i 2 S \ S+
k ,

 ̃k(i) =

8
>><

>>:

µC+
k
(i) ⇣ e�vi/", i 2 C+

k ,

�µC�
k
(i) ⇣ �e�vi/", i 2 C�

k ,

0, i 2 S \ (C+
k [ C�

k ).

Then

(i)  ̃T
k '̃k0 = 1{k=k0} + o(1);

(ii) (a)  ̃T
k L'̃k = ��k (1 + o(1));

(b) If k > k0, then lim
"!0

" ln(| ̃T
k L'̃k0 |) < ��k;

(c) If k < k0, then lim
"!0

" ln(| ̃T
k L'̃k0 |)  ��k0.

The proof of Theorem 4 makes use of the weak nested property of optimal W-graphs.

S+
2 = {1}, C+

2 = {1}
S�
2 = {2}, C�

2 = {2}

Exit: 1 ! 2

�2 ⇣ e�1/"

Right: '2 ⇣ [1, 0, 0]T

Left:  2 ⇣ [1,�1, 0]T

S+
1 = {1, 2}, C+

1 = {1, 2}
S�
1 = {3}, C�

1 = {3}
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Compare the asymptotic estimates with numerical results
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What if optimal W-graphs are not unique?
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• Good news: We can still construct asymptotic estimates of eigenvalues from the hierarchy of
typical transitions graphs. An event of exit is associated with a decrease in the number of
connected components.

• Bad news: When there is symmetry, asymptotic estimates of eigenvectors can no longer be
constructed simply by using the weights on vertices.
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A simple example with symmetry
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3

5
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�0.5774 + 0.0000i 0.2887 + 0.5000i 0.2887� 0.5000i

3

5

From t = 0 to t ⇣ e1/", the number of connected components in the typical transitions graphs
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.

3

Exit: {1, 2} ! 3

�1 ⇣ e�3/"

Right: '1 ⇣ [1, 1, 0]T

Left:  1 ⇣ [e�1/", 1,�1]
T

Rotation: {1 $ 2} $ 3

⇡1,2,3 ⇣ [e�3/", e�2/", 1]T ⇣ ⇡

L ⇣

2

4
�e�1/" e�1/"

0

0 �e�1/" e�1/"

e�1/"
0 �e�1/"

3

5

0,�1,�2 are the eigenvalues of �L.

Numerical results (set e�1/"
= 0.1)

L =

2

4
�0.1000 0.1000 0

0 �0.1000 0.1000
0.1000 0 �0.1000

3

5

� =
⇥

0.0000 + 0.0000i 0.1500 + 0.0866i 0.1500� 0.0866i
⇤

' =

2

4
�0.5774 + 0.0000i 0.5774 + 0.0000i 0.5774 + 0.0000i
�0.5774 + 0.0000i �0.2887� 0.5000i �0.2887 + 0.5000i
�0.5774 + 0.0000i �0.2887 + 0.5000i �0.2887� 0.5000i

3

5

 =

2

4
�0.5774 + 0.0000i 0.2887� 0.5000i 0.2887 + 0.5000i
�0.5774 + 0.0000i �0.5774 + 0.0000i �0.5774 + 0.0000i
�0.5774 + 0.0000i 0.2887 + 0.5000i 0.2887� 0.5000i

3

5

From t = 0 to t ⇣ e1/", the number of connected components in the typical transitions graphs

decreases by two, thus releasing two eigenvalues, and Re(�1,2) ⇣ e�1/"
.

3

G

T-graphs (risk seminar 20181016)

Tingyue Gan
⇤

October 9, 2018

L ⇣

2

4
�(e�1/" + e�2/") e�1/" e�2/"

e�2/" �(e�2/" + e�4/") e�4/"

e�5/" 0 �e�5/"

3

5

0 = �0 < �1 < �2 are eigenvalues of �L.

t = 0

t ⇣ e1/"

Exit: 1 ! 2
Rate: L12 ⇣ e�1/" ⇣ �2
Right: '2 ⇣ [1, 0, 0]T

Left:  2 ⇣ [1,�1, 0]T

t ⇣ e2/"

Rotation: 1 $ 2
Rate: e�2/"

⇡1,2 ⇣ [e�1/", 1]T

t ⇣ e3/"

Exit: {1, 2} ! 3
Rate: ⇡1,2(1)L13 ⇣ e�3/" ⇣ �1
Right: '1 ⇣ [1, 1, 0]T

Left:  1 ⇣ [e�1/", 1,�1]T

t ⇣ e5/"

Rotation: {1 $ 2} $ 3
Rate: e�5/"

⇡1,2,3 ⇣ [e�3/", e�2/", 1]T

⇤tgan@berkeley.edu

1

3 2

1

1

1

1

T-graphs (risk seminar 20181016)

Tingyue Gan
⇤

October 9, 2018

L ⇣

2

4
�(e�1/" + e�2/") e�1/" e�2/"

e�2/" �(e�2/" + e�4/") e�4/"

e�5/" 0 �e�5/"

3

5

0 = �0 < �1 < �2 are eigenvalues of �L.

t = 0

t ⇣ e1/"

Exit: 1 ! 2
Rate: L12 ⇣ e�1/" ⇣ �2
Right: '2 ⇣ [1, 0, 0]T

Left:  2 ⇣ [1,�1, 0]T

t ⇣ e2/"

Rotation: 1 $ 2
Rate: e�2/"

⇡1,2 ⇣ [e�1/", 1]T

t ⇣ e3/"

Exit: {1, 2} ! 3
Rate: ⇡1,2(1)L13 ⇣ e�3/" ⇣ �1
Right: '1 ⇣ [1, 1, 0]T

Left:  1 ⇣ [e�1/", 1,�1]T

t ⇣ e5/"

Rotation: {1 $ 2} $ 3
Rate: e�5/"

⇡1,2,3 ⇣ [e�3/", e�2/", 1]T

⇤tgan@berkeley.edu

1

Exit: {1, 2} ! 3

�1 ⇣ e�3/"

Right: '1 ⇣ [1, 1, 0]T

Left:  1 ⇣ [e�1/", 1,�1]
T

Rotation: {1 $ 2} $ 3

⇡1,2,3 ⇣ [e�3/", e�2/", 1]T ⇣ ⇡

From t = 0 to t ⇣ e1/", the number of

connected components in the typical

transitions graphs decreases by two,

thus releasing two eigenvalues, and

Re(�1,2) ⇣ e�1/"
.

3

[0]

[0] [0]

[0]

[0] [0]



Outline

�30

The problem

Backgrounds and motivations
The essence of the main results

Optimal W-graphs and asymptotic eigenvalues
The construction of optimal W-graphs 

Typical transitions graphs and the rediscovery of Freidlin’s cycles
Asymptotic estimates of eigenvectors

What if optimal W-graphs are not unique?
An application to LJ75 network 

Conclusion



Lennard-Jones cluster of 75 atoms
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• Lennard-Jones clusters have become
a much-studied test system for global
optimization methods designed for
configurational problems.

• Lennard-Jones potential energy plays a
key role in determining the stability of
crowed and highly branched molecules
such as proteins.

• The energy landscape of Lennard-Jones
cluster of 75 atoms* has a double funnel
structure. The global minimum is a
Marks decahedron, lying at the bottom
of the deep and narrow funnel. The
second lowest minimum is icosahedral,
locating at the wide and shallow funnel.
This causes the system to enter the wider
icosahedral on relaxation from high energy.

*The data for the LJ 75 network were kindly provided

by Professor D. Wales, Cambridge University, UK.
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Zero-temperature asymptotic analysis of the LJ75 Network
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• Vertices in the LJ75 network correspond to local potential minima, while arrows represent

transition states (potential barriers) between them.

• The largest connected component containing the two deepest minima has 169,523 vertices and

452,754 arrows.

• Transition rates:

Lij =
Oi(⇧+⌫i)

1/2

Oij(⇧+⌫ij)
1/2

exp

✓
�Vij � Vi

T

◆
. Here Uij = Vij � Vi and " = T .

⇤ Oi and Oij are the point group orders of the local minimum i and the transition state (ij) separating the local

minima i and j respectively, while ⇧+⌫i and ⇧+⌫ij are the products of the positive eigenvalues of the Hessian

matrices of the potential V at the minimum i and the transition state (ij) respectively, and Vi and Vij are the

values of the potential at i and (ij) respectively.

• The process of physical interest is the transition from the second lowest minimum to the global

minimum at very low temperature. We apply the proposed algorithm to

(1) estimate the asymptotic exit rate;

(2) identify the most likely zero-temperature transition path.

⇤
tgan@berkeley.edu
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Zero-temperature asymptotic analysis of the LJ75 Network
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• The �k corresponding to the
escape process is extracted
at k = 4395, and

�4395 ⇡ 147.2 exp(�7.897/T ).

• The “bridge” (p4395 ! q4395) is
found to be (25811 ! 73992).

• The “collapsing” component
S+
4395 has 92883 vertices and

its closed communicating class
C+
4395 has 28032 vertices.

• Most likely zero-temperature
transition path !

⇤tgan@berkeley.edu
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The problem

Backgrounds and motivations
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Optimal W-graphs and asymptotic eigenvalues
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Concluding remarks
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• We are interested in continuous-time Markov chains with exponentially small transition
rates Lij ⇣ exp (�Uij/"), and study their long-term dynamics through asymptotic spectral
decomposition of the generators.

• We propose an e�cient algorithm to compute the asymptotic estimates of eigenvalues and
eigenvectors of the generator via constructing a hierarchy of typical transitions graphs.

• Future work:

� Try using this methodology to study metastability in stochastic lattice systems, such as
the Ising model with Glauber dynamics?

⇤tgan@berkeley.edu
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