A Term Structure Model for Dividends and Interest Rates

Damir Filipović
Joint work with Sander Willems

École Polytechnique Fédérale de Lausanne
Swiss Finance Institute

Consortium for Data Analytics in Risk Seminar
UC Berkeley, July 31, 2018
Overview

1. Introduction
2. Polynomial Framework
3. Option Pricing
4. Linear Jump-Diffusion Model
5. Calibration
6. Extensions
A new market for dividend derivatives

- How can we trade dividends?
 - Synthetic replication.
 - Dividend swaps (OTC) or dividend futures (on exchange).
 - Latest innovations: single names, options, dividend-rates hybrids, ...

- Dividend derivative pricing.

- Asset pricing: term structure of equity risk premium.

- Interest rates: hybrid products, long maturity dividend claims.
Notional Outstanding Dividend Swaps and Futures

<table>
<thead>
<tr>
<th>Underlying Index</th>
<th>Notional Amount Outstanding (U.S. Dollars Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equity Index Future</td>
</tr>
<tr>
<td>EURO STOXX 50</td>
<td>137,717</td>
</tr>
<tr>
<td>S&P 500</td>
<td>320,964</td>
</tr>
<tr>
<td>Nikkei 225</td>
<td>23,924</td>
</tr>
<tr>
<td>FTSE 100*</td>
<td>59,616</td>
</tr>
</tbody>
</table>

Figure: Total notional outstanding as of June 2015. Source: Mixon and Onur (2016)
Notional Outstanding Dividend Swaps and Futures

Figure: Notional outstanding per expiry as of June 2015. Source: Mixon and Onur (2016)
Contribution of this paper

Term-structure model for dividends and interest rates with
- Closed-form prices for dividend futures/swaps, bonds, and dividend paying stocks.
- Moment-based approximations for a broad class of exotic payoffs.
- Positive dividends and possible seasonal behaviour.
- Flexible correlation between dividends and interest rates.
Overview

1 Introduction

2 Polynomial Framework

3 Option Pricing

4 Linear Jump-Diffusion Model

5 Calibration

6 Extensions
Factor process

- Filtered probability space \((\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{Q})\), with \(\mathbb{Q}\) risk-neutral pricing measure.

- Multivariate factor process \(X_t\) on \(E \subseteq \mathbb{R}^d\)

\[
dX_t = \kappa(\theta - X_t)dt + dM_t,
\]

for \(\kappa \in \mathbb{R}^{d \times d}\), \(\theta \in \mathbb{R}^d\), and martingale \(M_t\) such that \(X_t\) is a polynomial jump-diffusion, cfr. Filipović and Larsson (2017).

- Generator \(G\) maps polynomials to polynomials:

\[
\mathcal{GPol}_n(E) \subseteq \text{Pol}_n(E), \quad \forall n \in \mathbb{N},
\]

with \(\text{Pol}_n(E)\) space of polynomials on \(E\) of degree \(n\) or less.
PJD Moment Formula

- Fix polynomial basis for $\text{Pol}_n(E)$:
 \[H_n(x) = (h_1(x), \ldots, h_{N_n}(x))^\top, \]
 with $N_n = \dim(\text{Pol}_n(E)) \leq \binom{n + d}{n}$.
- \mathcal{G} restricts to a linear operator on $\text{Pol}_n(E)$
 \[\mathcal{G}H_n(x) = G_n H_n(x). \]
- First order linear ODE for $s \mapsto \mathbb{E}_t[H_n(X_s)]$
 \[\mathbb{E}_t[H_n(X_T)] = H_n(X_t) + G_n \int_t^T \mathbb{E}_t[H_n(X_s)] \, ds \]
- Solving ODE gives for all $t \leq T$
 \[\mathbb{E}_t[H_n(X_T)] = e^{G_n(T-t)}H_n(X_t). \]
Dividend Futures

- **Instantaneous dividend rate:**

 \[D_t = p^\top H_1(X_t), \]

 for \(p \in \mathbb{R}^{d+1} \) such that \(p^\top H_1(x) \geq 0 \) for all \(x \in E \).

- **Linear dividend futures price:**

 \[
 D_{fut}(t, T_1, T_2) = \mathbb{E}_t \left[\int_{T_1}^{T_2} D_s \, ds \right] = p^\top \int_{T_1}^{T_2} e^{G_1(s-t)} \, ds \, H_1(X_t).
 \]

- E.g., if \(H_1(x) = (1, x^\top)^\top \), then

 \[
 G_1 = \begin{bmatrix} 0 & 0 \\ \kappa \theta & -\kappa \end{bmatrix}.
 \]
Interest Rates

- Risk-neutral discount factor:
 \[\zeta_t = \zeta_0 e^{-\int_0^t r_s \, ds}, \quad t \geq 0, \]

 where \(r_t \) denotes the short rate.

- Directly specify \(\zeta_t \):
 \[\zeta_t := e^{-\gamma t} q^\top H_1(X_t), \]

 for \(\gamma \in \mathbb{R} \) and \(q \in \mathbb{R}^{d+1} \) such that \(\zeta_t \) is a positive and absolutely continuous process.

- Implied short rate:
 \[r_t = \gamma - \frac{q^\top G_1 H_1(X_t)}{q^\top H_1(X_t)}. \]

Bond Prices

- Time- \(t \) price of zero-coupon bond maturing at \(T \geq t \):

\[
P(t, T) = \frac{1}{\zeta_t} \mathbb{E}_t[\zeta_T] = e^{-\gamma(T-t)} \frac{q^\top e^{G_1(T-t)H_1(X_t)}}{q^\top H_1(X_t)}.
\]

- Linear discounted bond price \(\zeta_t P(t, T) \).

- If \(\Re(\text{eig}(\kappa)) > 0 \):

\[
\lim_{T \to \infty} - \frac{\log(P(t, T))}{T - t} = \gamma.
\]
Dividend Paying Stock

- Fundamental stock price

\[S_t^* = \frac{1}{\zeta_t} \mathbb{E}_t \left[\int_t^\infty \zeta_s D_s \, ds \right]. \]

- If \(\Re(\text{eig}(G_2)) < \gamma \), then

\[S_t^* = \bar{v}^\top (\gamma \text{Id} - G_2)^{-1} H_2(X_t) < \infty, \]

- Quadratic discounted fundamental stock price \(\zeta_t S_t^* \).
- Define arbitrage-free stock price as

\[S_t = \frac{L_t}{\zeta_t} + S_t^*, \]

for some nonnegative (local) martingale \(L_t \), cfr. Buehler (2015), Jarrow et al. (2007, 2010).
Overview

1. Introduction
2. Polynomial Framework
3. Option Pricing
4. Linear Jump-Diffusion Model
5. Calibration
6. Extensions
Maximum Entropy Moment Matching

- Pricing problem:
 \[
 \pi_t = \mathbb{E}_t \left[F\left(g(X_T)\right) \right],
 \]
 with \(g \in \text{Pol}_n(E) \) and \(F: \mathbb{R} \to \mathbb{R} \).

- Goal: Approximate density of \(g(X_T) \) based on moments.

- Maximize Boltzmann-Shannon entropy:
 \[
 \max_f - \int f(x) \ln f(x) \, dx
 \]
 s.t. \(\int x^n f(x) \, dx = M_n, \quad n = 0, \ldots, N \)

- Unique solution:
 \[
 f(x) = \exp \left(- \sum_{i=0}^{N} \lambda_i x^i \right)
 \]
Option Pricing

- Swaptions:

\[
\pi_{t}^{swpt} = \frac{1}{\zeta_{t}} \mathbb{E}_{t} \left[\left(\zeta_{T} \pi_{T}^{swap} \right)^{+} \right]
\]

\[
= \frac{1}{\zeta_{t}} \mathbb{E}_{t} \left[\left(\zeta_{T} - \zeta_{T} P(T, T_{n}) - \delta K \sum_{k=1}^{n} \zeta_{T} P(T, T_{k}) \right)^{+} \right]
\]

- Stock options

\[
\pi_{t}^{stock} = \frac{1}{\zeta_{t}} \mathbb{E}_{t} \left[\left(\zeta_{T} S_{T} - \zeta_{T} K \right)^{+} \right]
\]

\[
= \frac{1}{\zeta_{t}} \mathbb{E}_{t} \left[\left(L_{T} + \zeta_{T} S_{T}^{*} - \zeta_{T} K \right)^{+} \right]
\]
Option Pricing

- Dividend options

\[\pi_t^{\text{div}} = \mathbb{E}_t \left[\left(\int_{T_0}^{T_1} D_s \, ds - K \right)^+ \right] \]

\[= \mathbb{E}_t \left[(I_{T_1} - I_{T_0} - K)^+ \right], \]

with \(I_T = \int_0^T D_s \, ds \).

- Augment factor process: \((I_t, X_t)\) is PJD.

- Compute moments \(\mathbb{E}_t \left[(I_{T_1} - I_{T_0})^n \right] \) using law of iterated expectations.
Overview

1. Introduction
2. Polynomial Framework
3. Option Pricing
4. Linear Jump-Diffusion Model
5. Calibration
6. Extensions
Linear Jump-Diffusion

- Specify martingale part dM_t as

$$dX_t = \kappa(\theta - X_t)\,dt + \text{diag}(X_t^-)(\Sigma\,dB_t + dJ_t)$$

- B_t: standard d-dimensional Brownian motion, $\Sigma \in \mathbb{R}^{d \times d}$ lower triangular with $\Sigma_{ii} > 0$

- J_t: compensated compound Poisson process, jump intensity ξ and i.i.d. jump amplitudes $e^Z - 1$, $Z \sim \mathcal{N}(\mu_J, \Sigma_J)$.

- Unique positive solution if $\kappa\theta \geq 0$ and if $\kappa_{ij} \leq 0$ for $i \neq j$.

- Allows for flexible instantaneous correlation between factors through Σ.

- Moments in closed-form (PJD).
Overview

1. Introduction
2. Polynomial Framework
3. Option Pricing
4. Linear Jump-Diffusion Model
5. Calibration
6. Extensions
Model Specification

- Five factor model $X_t = (X_{0t}^I, X_{1t}^I, X_{2t}^I, X_{1t}^D, X_{2t}^D)^\top$

- Rate factors $X_t^I = (X_{0t}^I, X_{1t}^I, X_{2t}^I)^\top$:

$$dX_t^I = \begin{bmatrix} \kappa_0^I & -\kappa_0^I & 0 \\ 0 & \kappa_1^I & -\kappa_1^I \\ 0 & 0 & \kappa_2^I \end{bmatrix} \begin{bmatrix} \theta^I - X_{0t}^l \\ \theta^I - X_{1t}^l \\ \theta^I - X_{2t}^l \end{bmatrix} dt + \text{diag}(X_t^I) \begin{bmatrix} 0 & 0 \\ \Sigma_{11}^I & 0 \\ \Sigma_{21}^I & \Sigma_{22}^I \end{bmatrix} \begin{bmatrix} dB_{1t} \\ dB_{2t} \end{bmatrix},$$

with $\zeta_t = e^{-\gamma t} X_{0t}^l$, $\theta^l = 1$, and $\gamma = 4.2\%$.

- Dividend factors $X_t^D = (X_{1t}^D, X_{2t}^D)^\top$:

$$dX_t^D = \begin{bmatrix} \kappa_1^D & -\kappa_1^D \\ 0 & \kappa_2^D \end{bmatrix} \begin{bmatrix} \theta^D - X_{1t}^D \\ \theta^D - X_{2t}^D \end{bmatrix} dt + \text{diag}(X_t^D) \begin{bmatrix} 0 \\ \Sigma_{11}^D \\ \Sigma_{21}^D \end{bmatrix} \begin{bmatrix} dB_{3t} \\ dB_{4t} \end{bmatrix} + \begin{bmatrix} dB_{1t} \\ dB_{2t} \end{bmatrix},$$

with $D_t = X_{1t}^D$.

- Explicit restrictions on parameters s.t. $S_t^* < \infty$.

Calibration
Jump-diffusive stock price bubble:

\[dL_t = L_t - (\sigma^L dB^L_t + dJ^L_t) \]

Assume \(L_t \) independent of \(X_t \)

\[
\pi^\text{stock}_t = \frac{1}{\zeta_t} \mathbb{E}_t \left[(L_T + \zeta_T S_T^* - \zeta_T K)^+ \right]
\]

\[
= \frac{1}{\zeta_t} \mathbb{E}_t \left[C^M_t (L_t, \tilde{K}(X_T)) \right],
\]

where \(C^M_t (L_t, \tilde{K}(X_T)) \) is the Merton (1976) option price with spot \(L_t \) and strike \(\tilde{K}(X_T) = \zeta_T K - \zeta_T S_T^* \).

Dependence between \(L_t \) and \(X_t \) is possible as long as \((X_t, L_t)\) remains jointly a PJD (at the cost of an increased dimension).
Data

Calibration date: December 21 2015.

- **Euribor swaps (7)**
 Tenors: 1, 2, 3, 5, 7, 10, 15y.

- **Euribor swaptions (12)**
 Expiries: 3m, 6m, 1y
 Tenors: 3, 5, 10, 15y
 Moneyness: ATM

- **Eurostoxx 50 index dividend futures (10)**
 Expiry: 1-10 y

- **Eurostoxx 50 index dividend options (21)**
 Expiry: 2, 3, 4y
 Moneyness: 0.9, 0.95, 0.975, 1, 1.025, 1.05, 1.1

- **Eurostoxx 50 index options (24)**
 Expiry: 3m, 6m, 1y
 Moneyness: 0.8, 0.9, 0.95, 0.975, 1, 1.025, 1.05, 1.1
Swaps and Dividend Futures (21/12/2015)

(a) Euribor swap rates

(b) Eurostoxx 50 dividend futures
Euribor Swaptions (21/12/2015)

(a) 3 month maturity

(b) 6 month maturity

(c) 1 year maturity
Eurostoxx 50 Dividend Futures Options (21/12/2015)

(a) Dec 2016-2017

(b) Dec 2017-2018

(c) Dec 2018-2019
Index Options (21/12/2015)

(a) 3 month maturity

(b) 6 month maturity

(c) 1 year maturity
Moments and Option Prices

(a) Swaption, 3m expiry
(b) Index option, 3m expiry
(c) Dividend option, 2y expiry
Overview

1. Introduction
2. Polynomial Framework
3. Option Pricing
4. Linear Jump-Diffusion Model
5. Calibration
6. Extensions
Dividend Seasonality

Figure: Monthly dividend payments by Eurostoxx 50 constituents (in index points) from October 2009 until October 2016. Source: Eurostoxx 50 DVP index, Bloomberg.
Dividend Seasonality

- Standard choice to model annual cycles:

\[\delta(t) = \rho_0 + \rho^\top \Gamma(t), \quad \Gamma(t) = \begin{bmatrix} \sin(2\pi t) \\ \cos(2\pi t) \\ \vdots \\ \sin(2\pi K t) \\ \cos(2\pi K t) \end{bmatrix}. \]

- Remark, \(\Gamma(t) \) is the solution of a linear ODE:

\[d\Gamma(t) = \text{blkdiag} \left(\begin{bmatrix} 0 & 2\pi \\ -2\pi & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & 2\pi K \\ -2\pi K & 0 \end{bmatrix} \right) \Gamma(t) dt. \]

→ We can add \(\Gamma \) to the state vector!

- For example:

\[dX_t = \kappa(\delta(t) - X_t) dt + dM_t \]
Dividend Swaps

- Dividend swap/forward price:

\[
D_{\text{swap}}(t, T_1, T_2) = \frac{1}{P(t, T_2)} \frac{1}{\zeta_t} \mathbb{E}_t \left[\zeta_{T_2} \int_{T_1}^{T_2} D_s \, ds \right] \\
= D_{\text{fut}}(t, T_1, T_2) + \frac{\text{Cov}_t \left[\zeta_{T_2}, \int_{T_1}^{T_2} D_s \, ds \right]}{P(t, T_2) \zeta_t}.
\]

- In polynomial framework:

\[
D_{\text{swap}}(t, T_1, T_2) = \frac{w(t, T_1, T_2)^\top H_2(X_t)}{q^\top e^{G_1(T_2-t)} H_1(X_t)},
\]

with \(w(t, T_1, T_2) = \int_{T_1}^{T_2} q^\top e^{G_1(T_2-s)} Q e^{G_2(s-t)} \, ds\) and \(QH_2(x) = H_1(x)H_1(x)^\top p\).
Conclusion

- Joint term-structure model for dividends and interest rates.
- Explicit prices for dividend futures/swaps, bonds, and dividend paying stock.
- Moment-based approximations for (path dependent) option prices using principle of maximum entropy.
- Future work:
 - Time-series estimation of S_t^*.
 - SVJ model for bubble component.
 - Single-stock framework with credit risk.

https://ssrn.com/abstract=3016310
Thank you for your attention!
References I

References II

