Identifying Financial Risk Factors
with a Low-Rank Sparse Decomposition

Lisa Goldberg Alex Shkolnik

Berkeley Columbia Meeting in Engineering and Statistics

24 March 2016
Outline

1. A Brief History of Factor Models in Finance
3. Low Rank Plus Sparse Decompositions of Covariance Matrices
4. Simulation Results
5. Empirical Results
6. Summary
A Brief History of Factor Models in Finance

- Market Model and CAPM (1960s)
- Fundamental Models (1970s–today)
Market Model and CAPM

In the 1960s, Jack Treynor (1930 –) and Bill Sharpe (1934 –) developed the Capital Asset Pricing Model, which relates security expected returns to market returns.

More than half a century after the appearance of [Treynor, 1962] and [Sharpe, 1964], the market model and CAPM remain central to quantitative finance.
Market Model

Security return R is a sum of a component due to a market factor M and a specific component ϵ

$$R = M \beta + \epsilon$$

- β is the sensitivity of security return to market return
- Specific returns ϵ are uncorrelated across securities

As a consequence of these assumptions and others, the security covariance matrix Σ can be decomposed as a sum of a \textit{rank-one} factor component and a \textit{diagonal} security specific return component

$$\Sigma = \sigma_M^2 \beta^T \beta + \Delta$$
Arbitrage Pricing Theory and Multi-Factor Models

In the 1970s, Stephen Ross (1944–) expanded on ideas in the CAPM to allow for more factors [Ross, 1976] leads to a security covariance matrix that can be decomposed (using PCA) as a sum of a low-rank factor component and a diagonal security specific return component

\[\Sigma = X^\top FX + \Delta \]
Arbitrage Pricing Theory and Multi-Factor Models

[Chamberlain and Rothschild, 1983] built on [Ross, 1976] by developing approximate factor models. Their construction relies on asymptotic results and it leads to a covariance matrix decomposition as a sum of a low-rank factor component and a sparse security specific return component:

\[\Sigma = X^\top FX + S \]

but it has not caught on in practice.
Barr Rosenberg founded Barra ("Barr and Associates") in 1975.

[Rosenberg, 1984] and [Rosenberg, 1985] rely on fundamental factors, reversing the roles of the known and unknown variables in a regression to estimate factor returns from pre-specified exposures (factor betas)
Fundamental Factor Models

According to the fundamental models,

\[\Sigma = \mathcal{L} + \Delta \]

- \(\mathcal{L} = X^\top FX \) has low rank
- \(\Delta \) is a diagonal security specific return covariance matrix

Barra’s fundamental models dominate industry practice today
Outline

1. A Brief History of Factor Models in Finance
3. Low Rank Plus Sparse Decompositions of Covariance Matrices
4. Simulation Results
5. Empirical Results
6. Summary
Examples of Risk Factors

- Market
- Equity styles
- Country, industry, currency
- Creditworthiness
- Prepayment sensitivity
- Liquidity
- Emerging factors: carbon reserves, cyberterrorism, longevity
<table>
<thead>
<tr>
<th>Factor Type</th>
<th>Broad</th>
<th>Narrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent</td>
<td>Easy</td>
<td>Fundamental</td>
</tr>
<tr>
<td>Transient</td>
<td>Traditional PCA</td>
<td></td>
</tr>
</tbody>
</table>
Which Models are Expensive to Run?

<table>
<thead>
<tr>
<th></th>
<th>Human Intensive</th>
<th>Machine Intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Traditional PCA</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Outline

1. A Brief History of Factor Models in Finance
3. Low Rank Plus Sparse Decompositions of Covariance Matrices
4. Simulation Results
5. Empirical Results
6. Summary
Low Rank Plus Sparse Decompositions of Covariance Matrices

Inspired by sparse and low-rank decompositions developed in [Candès et al., 2011] and elsewhere

as well as graphical lasso decompositions with origins in [Speed and Kiiveri, 1986] and [Yuan and Lin, 2007]

[Chandrasekaran et al., 2012] develop a convex optimization that, under hypotheses, provides a latent factor decomposition:

\[\hat{\Sigma}^{-1} \approx \hat{S} - \hat{L} \]
Low Rank Plus Sparse Decompositions of Covariance Matrices

The routine maximizes an objective function:

\[\text{Gaussian likelihood } \left(S - L, \hat{\Sigma} \right) - \lambda (\gamma \| S \|_1 + \text{tr}(L)) - \text{PDC}, \]

which we solved with an algorithm developed in [Ma et al., 2013]. There is no reliance on asymptotic theory, but there is a normality assumption.
Suppose the inverse of a covariance matrix admits a low-rank plus sparse decomposition:

\[\Sigma^{-1} = S - L \]

Then the covariance matrix also admits a low-rank plus sparse decomposition:

\[\Sigma = L + S \]

and the Woodbury formula transforms one decomposition to the other: \(S = S^{-1} \) and \(L = SL\Sigma \).
Outline

1. A Brief History of Factor Models in Finance
3. Low Rank Plus Sparse Decompositions of Covariance Matrices
4. Simulation Results
5. Empirical Results
6. Summary
Specification

- \(N = 32 \) securities
- \(T = 260 \) observations (one year of daily data)
- \(K = 2 \) broad factors
 - The market, with annualized volatility of 20% (long only factor: all securities have positive exposure)
 - Creditworthiness with annualized volatility of 8% (long/short factor: have the securities are creditworthy, half are close to default)
- \(\kappa = 4 \) narrow factors
 - China
 - Argentina
 - India
 - Saudi Arabia
Input to Algorithm: Sample Covariance Matrix
Low-Rank Component of the Decomposition
Sparse Component of the Decomposition
True and Recovered Eigenvalues

- **True low rank**
- **Recovered low rank**
- **True sparse**
- **Recovered sparse**
Outline

1. A Brief History of Factor Models in Finance
3. Low Rank Plus Sparse Decompositions of Covariance Matrices
4. Simulation Results
5. Empirical Results
6. Summary
Specification

- $N = 32$ securities
- $T = 260$ observations (one year of daily data)
- $K = ?$ broad factors
- Securities drawn from $\kappa = 4$ countries
 - China
 - Argentina
 - India
 - Saudi Arabia
Input to Algorithm: Sample Covariance Matrix, Oct 2015
Low-Rank and Sparse Decomposition: Covariance Matrices
Low-Rank and Sparse Decomposition: Correlation Matrices
Recovered Eigenvalues

- Recovered low rank
- Recovered sparse
Outline

1. A Brief History of Factor Models in Finance
3. Low Rank Plus Sparse Decompositions of Covariance Matrices
4. Simulation Results
5. Empirical Results
6. Summary
Summary: What Would Barra Do if It Were Google?

- Fundamental risk models dominate the financial services industry
- PCA-based risk models have not been competitive
- We explore low-rank sparse decompositions of financial data
 - The approach pioneered in [Chandrasekaran et al., 2012] identified and separated broad and narrow factors in simulated data and in empirical data
 - Unlike traditional PCA, this algorithm does not rely on asymptotic results or rank orderings by eigenvalues
Ongoing Research

- Investigate the impact of the normality assumptions and, if appropriate, generalize the algorithm
- Automate the search for optimal calibration parameters
- Benchmark the performance of low-rank sparse models against fundamental and PCA-based models
Acknowledgement

We thank State Street Global Exchange for financial and intellectual support
Thank You
References I

Robust principal component analysis?
Journal of the ACM, 58(3).

Arbitrage, factor structure and mean-variance analysis on large asset markets.
References II

Latent variable graphical model selection via convex optimization.

Alternating direction methods for latent variable gaussian graphical model selection.
References III

Prediction of common stock investment risk.

Prediction of common stock betas.

The arbitrage theory of capital asset pricing.

References V
